, можна пріпустіті, что зображення Було ОТРИМАНО уявним «8-бітовім напівтоновім джерелом», Який послідовно породжує статистично незалежні пікселі согласно якомусь Заздалегідь заданому імовірнісному законом. При цьом необходимо, щоб символи джерела були рівнямі яскравості, а алфавіт джерела складався з 256 можливіть сімволів. Если ймовірності сімволів відомі, то середній інформаційний Зміст зображення (ентропія) шкірного елемента зображення может буті Обчислено безпосередно помощью вирази (1.3-3). Например, у випадка одномірної щільності ймовірностей, символи джерела рівноймовірно и джерело характерізується ентропією 8 біт/елемент. Тобто кількістю информации на символ джерела (елемент зображення) складі 8 біт. Тоді повна ентропія наведення вищє зображення складі 256 бітів. Це конкретнішими зображення є только Одне з можливіть рівноймовірно збережений розмірамі 8 квітня пікселів, Які могут буті породжені обраності Джерелом.
альтернативних підходом до оцінювання інформаційного складу может буті создания моделі джерела, заснованої на відносній частоті з'явиться рівнів яркостей Розглянуто зображення. Тобто спостережуваного зображення может буті Використано як зразок послідовного процесса роботи джерела значень Яскрава, Яким воно Було ворота. Оскількі спостережуваного зображення є Єдиним індікатором Зміни джерела, то доцільнім буде использование гістограмі Яскрава отриманий зображення для моделювання розподілу джерела сімволів:
Оцінка ентропії джерела, названа оцінкою Першого порядку, может буті Обчислено помощью (1.3-3).
Для даного прикладу оцінка Першого порядку складі 1,81 біт/елемент. Таким чином, Ентропія джерела складі примерно 1,81 біт/елемент, а Всього зображення - 58 бітів.
Більш точні ОЦІНКИ ентропії джерела значень Яскрава, Який породивши данє зображення, могут буті розраховані путем дослідження відносної частоти з'явилися блоків пікселів на зображенні, де під блоком розуміється група сусідніх пікселів. При збільшенні розміру блоку до безкінечності, оцінка около до істінної ентропії джерела. (Цей результат может буті отриманий помощью процедури, что застосовувалася для доказу теореми кодування без галасу в Розділі 1.3.3.). Таким чином, вважаючі, что у даного зображення рядки послідовно зв язані один за одним, а Кінець зв язаний з качаном, можна обчісліті відносні частоти пар пікселів (тобто дворазове Розширення джерела)
Отримав оцінка ентропії (знову-таки, за помощью (1.3-3)) складає 2,5/2=1,25 біт/елемент, де поділ на 2 є наслідком РОЗГЛЯДУ двох пікселів одночасно. Ця оцінка назівається оцінкою іншого порядку ентропії джерела, оскількі вон ОТРИМАНО Обчислення відносніх частот двохелементній блоків. Хоча ОЦІНКИ третього, четвертого, и більш високих порядків забезпечен б ще краще набліження ентропії джерела, збіжність ціх оцінок до істінної ентропії джерела повільна, а їх обчислення доладно. Например, Звичайне 8-бітове зображення містіть можливіть пар значень, відносні частоти якіх повінні буті візначені. Если розглядаються блоки з 5 елементів, то значення можливіть груп з п'яти значень складі, або ~.
Хоча знаходження істінної ентропії зображення достаточно Важко, тім НЕ менше, ОЦІНКИ, подібні Розглянуто у попередніх прикладах, допомагають у розумінні можливіть стиснения зображення. Например, оцінка Першого порядку ентропії дает нижню межу для стиснения, которого можна досягті ЗАСТОСУВАННЯ одного только кодом змінної довжина. (Згадаймо з розділу 1.1.1, что коди змінної Довжина Використовують для скороченню кодової надлішковості.) Крім того, Відмінності между оцінкамі ентропії Першого и більш високих порядків вказують на наявність або відсутність міжелементної надмірності; тобто смороду показують, чи є елементи зображення статистично Незалежності. Если елементи віявляються стастатістічно незалежні (Що означає відсутність міжелементніх надмірності), то тоді ОЦІНКИ високих порядків ентропії еквівалентні оцінкам Першого порядку, а значити, нерівномірне кодування Забезпечує оптімальне стиснения. Для зображення, Розглянуто в попередня прікладі, чисельного Різниця между оцінкамі ентропії Першого и іншого порядків показує, что может буті побудоване таке відображення, Пожалуйста дозволити додатково скоротіті представлення зображення на 1,81 - 1,25=0,56 біт/елемент.
Приклад 1.11. ! Застосування відображення для Зменшення ентропії.
Розглянемо відображ?? ння елементів зображення, наведення в попередня прікладі, Пожалуйста представляет зображення Наступний чином:
0 0 74 74 74 0 0
0 0 74 74 74 0 0
0 0 74 74 74 0 0
0 0 74 74 74 0 0
сформованому тут різніцевій масив отриманий помощью Першого стовпця вихідного зображення и ис...