nation of cycle of actions after single influence the system reverts to the original state, in which it was prior to the beginning of external influence (one single result of action with one single external influence). The latter does not apply to the so-called generating systems. It is associated with the fact that after the result of action has been achieved by the system, it becomes independent of the system which produced it and may become external influence in respect to it. If it is conducted to the external influence entry point of the same system, the latter would again get excited and again produce new result of action (positive feedback, PF). This is how all generators work. Thus, if the first external influence affects the system or external influence is ever changing, the number of functioning SFU systems varies. If no external influence is exerted on the system or is being exerted but is invariable, the number of functioning system SFU would not vary. Based on the above we can draw the definitions of stationary conditions and dynamism of process. p> Functional condition of system. Functional condition of the system is defined by the number of active SFU. If all SFU function simultaneously, it shows high functional condition which arises in case of maximum external influence. If none SFU is active it shows minimum functional condition. It may occur in the absence of external influence. External environment always exerts some kind of influence on some systems, including the systems of organism. Even in quiescent state the Earth gravitational force makes part of our muscles work and consequently absolute rest is non-existent. So, when we are kind of in quiescent state we actually are in one of the low level states of physical activity with the corresponding certain low level of functional state of the organism. Any external influence requiring additional vigorous activity would transfer to a new level of a functional condition unless the SFU reserve is exhausted. When new influence is set at a new invariable (stationary) level, functional condition of a system is set on a new invariable (stationary) functional level. p> Stationary states/modes. Stationary state is such a mode of systems when one and the same number of SFU function and no change occurs in their functional state. For example, in quiescence state all systems of organism do not change their functional mode as far as about the same number of SFU is operational. A female runner who runs a long distance for quite a long time without changing the speed is also in a stationary state/mode. Her load does not vary and consequently the number of working (functioning) SFU does not change either, ie the functional state of her organism does not change. Her organism has already "Got used" to this unchangeable loading and as there is no increase of load there is no increase in the number of working SFU, too. The number of working SFU remains constant and therefore t...