Теми рефератів
> Реферати > Курсові роботи > Звіти з практики > Курсові проекти > Питання та відповіді > Ессе > Доклади > Учбові матеріали > Контрольні роботи > Методички > Лекції > Твори > Підручники > Статті Контакти
Реферати, твори, дипломи, практика » Новые рефераты » Measurement of Elastic Constant of Spiral Spring, and Earth's Gravitational Intensity

Реферат Measurement of Elastic Constant of Spiral Spring, and Earth's Gravitational Intensity





,4000,14290,4500,156100,5000,171

Table 2. The measurement results of total mass of load and time of 10 complete oscillations

Raw Data MeasureMass of load m/(kg)? m ???? ± 0,001 kgTrial # 1Trial # 2Trial # 3Time of 10 complete oscillations by load decreasing t (s)? t=± 0,1 sTime of 10 complete oscillations by load decreasing t (s)? t=± 0, 1 sTime of 10 complete oscillations by load decreasing t (s)? t=± 0,1 s10,5008,38,38,220,4508,08,18,130,4007,57,67,740,3507,36,17,350,3006,86, 66,660,2506,46,16,3 70,2005,65,75,880,1505,05,15,190,1004,64,84,9100,0503,94,13,8

Calculations

spiral spring gravitational intensity

Table 3. Measurement error and calculations

Total mass of load M/(kg)? M ????? ± 0,002 kg ± 0,6% .Extension x/(m)? l=± 0,002 m ± 1,0% Average time of 10 complete oscillations t (s) ± 1,0% .Period of oscillation T (s) ± 2% .Oscillation period in the square T 2 (s 2) ± 4%.0,5490,0228,30,830,680,4990,0368,10,810,650,4490,0517,60,760,580,3990,0656,90,690,480,3490,0796,70,670,440,2990,0946,30,630,390,2490,1085,70,570,320,1990,1225,10,510,260,1490,1364,80,480,230,0990,1513,90,390,15 for total mass of load M :: (0,549 + 0,099)/2=0,324 kg.uncertainty: 0,002/0,325=± 0,006.uncertainty: 0,006 * 100%=± 0,6% .for extension x: :( 0,151 + 0,022 )/2=0,087 m.uncertainty: 0,001 /=0,087=± 0,011.uncertainty: 0,011 * 100%=± 1,0% for period of oscillation T :: (0,83 + 0,39)/2=0, 61 s.uncertainty: 0,01/0,61=± 0,02.uncertainty: 0,02 * 100%=± 2,0% .for oscillation period in the square T 2: 2,0% + 2,0 %=4,0% graph of Oscillation period in the square against of Total mass of load: gradient: (0,099 + 0,6%=0,100 kg); (0,15 - 4,0%=0,14 s 2).


(0,549 - 0,6%=0,546 kg); (0,68 + 4,0%=0,71 s 2).

gradient: (0,099 - 0,6%=0,098 kg); (0,15 + 4,0%=0,16 s 2).


(0,549 + 0,6%=0,552 kg); (0,68 - 4,0%=0,66 s 2).

graph of Total mass of load against Extensiongradient: (0,022 + 1,0%=0,022 m); (0,099 - 0,6%=0,098 kg).


(0,151 - 1,0%=0,150 m); (0,549 + 0,6%=0,552 kg).

gradient: (0,022 - 1,0%=0,022 m); (0,099 + 0,6%=0,100 kg).



(0,151 + 1,0%=0,152 m); (0,549 - 0,6%=0,546 kg).


Presenting processed data:

Part 2. To process the data, I plot the oscillation period in the square T 2 of total mass of load M (Fig.3). The graph, I have shown a best fit line and its equation.graph I plotted the error bars for oscillation period in the square T 2 and total mass of load.


.2

I have plotted the graph of maximum and minimum gradient., we can calculate the value of the spring constant of spring of gradient obtained from the graph:

== 34,79 Nm - 1.

of uncertainty in this value of the spring constant of spring using max/min gradients:


k min== 32,30 Nm - 1 k max== 34,53 Nm - 1? 34,90 Nm - 1

of uncertainty in this value of the spring constant of spring using max/min gradients:

min== 31,16 Nm - 1 k max== 35,92 Nm - 1.

the absolute uncertainty in this value of the spring constant of spring:


? k=±== ± 2,38 Nm - 1

the experimental value and absolute uncertainty spring constant:

exp ±? k? (34,79 ± 2,38) Nm - 1

the fractional uncertainty in the spring constant of spring: Fractional uncertainty=(2,38)/(34,79)=0,068? 0,07. Calculate the percentage uncertainty in this value of the resistivity of constantan:

uncertainty=0,07? 100%=7,0%.



, we can calculate the value of acceleration due to gravity of gradient obtained from the graph:

== 9,95 Nkg - 1.

of uncertainty in this value of the acceleration due to gravity using max/min gradients:

min== 9,85 Nkg - 1 g max== 10,06 Nkg - 1

the absolute uncertainty in this value of the acceleration due to gravity:


? g=±== ± 0,11 Nkg - 1

the experimental value and absolute uncertainty acceleration due to gravity:


g exp ±? g? (9,95 ± 0,11) Nkg - 1

the fractional uncertainty in the acceleration due to gravity:

uncertainty=(0,11)/(9,95)=0,01

the percentage uncertainty in this value of acceleration due to gravity:


Назад | сторінка 2 з 3 | Наступна сторінка





Схожі реферати:

  • Реферат на тему: Управління фінансами підприємства "Spring"
  • Реферат на тему: Henry Miller's philosophy and style in "Tropic of cancer", &q ...
  • Реферат на тему: Модуль Graph в програмі Turbo Pascal
  • Реферат на тему: Total Commander
  • Реферат на тему: Файлові менеджери, программа Total Comander