,4000,14290,4500,156100,5000,171
Table 2. The measurement results of total mass of load and time of 10 complete oscillations
Raw Data MeasureMass of load m/(kg)? m ???? ± 0,001 kgTrial # 1Trial # 2Trial # 3Time of 10 complete oscillations by load decreasing t (s)? t=± 0,1 sTime of 10 complete oscillations by load decreasing t (s)? t=± 0, 1 sTime of 10 complete oscillations by load decreasing t (s)? t=± 0,1 s10,5008,38,38,220,4508,08,18,130,4007,57,67,740,3507,36,17,350,3006,86, 66,660,2506,46,16,3 70,2005,65,75,880,1505,05,15,190,1004,64,84,9100,0503,94,13,8
Calculations
spiral spring gravitational intensity
Table 3. Measurement error and calculations
Total mass of load M/(kg)? M ????? ± 0,002 kg ± 0,6% .Extension x/(m)? l=± 0,002 m ± 1,0% Average time of 10 complete oscillations t (s) ± 1,0% .Period of oscillation T (s) ± 2% .Oscillation period in the square T 2 (s 2) ± 4%.0,5490,0228,30,830,680,4990,0368,10,810,650,4490,0517,60,760,580,3990,0656,90,690,480,3490,0796,70,670,440,2990,0946,30,630,390,2490,1085,70,570,320,1990,1225,10,510,260,1490,1364,80,480,230,0990,1513,90,390,15 for total mass of load M :: (0,549 + 0,099)/2=0,324 kg.uncertainty: 0,002/0,325=± 0,006.uncertainty: 0,006 * 100%=± 0,6% .for extension x: :( 0,151 + 0,022 )/2=0,087 m.uncertainty: 0,001 /=0,087=± 0,011.uncertainty: 0,011 * 100%=± 1,0% for period of oscillation T :: (0,83 + 0,39)/2=0, 61 s.uncertainty: 0,01/0,61=± 0,02.uncertainty: 0,02 * 100%=± 2,0% .for oscillation period in the square T 2: 2,0% + 2,0 %=4,0% graph of Oscillation period in the square against of Total mass of load: gradient: (0,099 + 0,6%=0,100 kg); (0,15 - 4,0%=0,14 s 2).
(0,549 - 0,6%=0,546 kg); (0,68 + 4,0%=0,71 s 2).
gradient: (0,099 - 0,6%=0,098 kg); (0,15 + 4,0%=0,16 s 2).
(0,549 + 0,6%=0,552 kg); (0,68 - 4,0%=0,66 s 2).
graph of Total mass of load against Extensiongradient: (0,022 + 1,0%=0,022 m); (0,099 - 0,6%=0,098 kg).
(0,151 - 1,0%=0,150 m); (0,549 + 0,6%=0,552 kg).
gradient: (0,022 - 1,0%=0,022 m); (0,099 + 0,6%=0,100 kg).
(0,151 + 1,0%=0,152 m); (0,549 - 0,6%=0,546 kg).
Presenting processed data:
Part 2. To process the data, I plot the oscillation period in the square T 2 of total mass of load M (Fig.3). The graph, I have shown a best fit line and its equation.graph I plotted the error bars for oscillation period in the square T 2 and total mass of load.
.2
I have plotted the graph of maximum and minimum gradient., we can calculate the value of the spring constant of spring of gradient obtained from the graph:
== 34,79 Nm - 1.
of uncertainty in this value of the spring constant of spring using max/min gradients:
k min== 32,30 Nm - 1 k max== 34,53 Nm - 1? 34,90 Nm - 1
of uncertainty in this value of the spring constant of spring using max/min gradients:
min== 31,16 Nm - 1 k max== 35,92 Nm - 1.
the absolute uncertainty in this value of the spring constant of spring:
? k=±== ± 2,38 Nm - 1
the experimental value and absolute uncertainty spring constant:
exp ±? k? (34,79 ± 2,38) Nm - 1
the fractional uncertainty in the spring constant of spring: Fractional uncertainty=(2,38)/(34,79)=0,068? 0,07. Calculate the percentage uncertainty in this value of the resistivity of constantan:
uncertainty=0,07? 100%=7,0%.
, we can calculate the value of acceleration due to gravity of gradient obtained from the graph:
== 9,95 Nkg - 1.
of uncertainty in this value of the acceleration due to gravity using max/min gradients:
min== 9,85 Nkg - 1 g max== 10,06 Nkg - 1
the absolute uncertainty in this value of the acceleration due to gravity:
? g=±== ± 0,11 Nkg - 1
the experimental value and absolute uncertainty acceleration due to gravity:
g exp ±? g? (9,95 ± 0,11) Nkg - 1
the fractional uncertainty in the acceleration due to gravity:
uncertainty=(0,11)/(9,95)=0,01
the percentage uncertainty in this value of acceleration due to gravity: