Теми рефератів
> Реферати > Курсові роботи > Звіти з практики > Курсові проекти > Питання та відповіді > Ессе > Доклади > Учбові матеріали > Контрольні роботи > Методички > Лекції > Твори > Підручники > Статті Контакти
Реферати, твори, дипломи, практика » Статьи » Методика розробки програмного продукту для пошуку причин у змінах трендів в даних

Реферат Методика розробки програмного продукту для пошуку причин у змінах трендів в даних





xIssuer]

, csec.SecType as [CoraxSecType]

, csec.InvType as [CoraxInvType]

, csec.PriceCurrency as [CoraxPriceCurrency]

, csec.Region as [CoraxRegion]

, csec.IssuerCountry as [CoraxIssuerCountry]

, csec.Exchange as [CoraxExchange]

, csec.IndustrySector as [CoraxIndustrySector]

, sf.ChangeType as [ChangeType]

, ssec.Ticker as [ChangeTicker]

, ssec.Issuer as [ChangeIssuer]

, ssec.SecType as [ChangeSecType]

, ssec.InvType as [ChangeInvType]

, ssec.PriceCurrency as [ChangePriceCurrency]

, ssec.Region as [ChangeRegion]

, ssec.IssuerCountry as [ChangeIssuerCountry]

, ssec.Exchange as [ChangeExchange]

, ssec.IndustrySector as [ChangeIndustrySector] .CoraxFactsTable as cfdbo.SecuritiesSource as csec on cf.SecId=csec.SecIddbo.PriceFactstable as sf on cf.EffectiveDate=sf. [DateStart] dbo.SecuritiesSource as ssec on sf.SecId=ssec.SecId.FieldType= Price




Додаток 4


Система класифікації

__ future__ import divisionsyscsv as csvnumpy as nppandas as pdpandas import DataFramesklearnsklearn.preprocessing import LabelEncodersklearn.cross_validation import train_test_splitsklearn.grid_search import GridSearchCVsklearn.metrics import classification_reportsklearn.svm import SVCsklearn.svm import LinearSVCsklearn import cross_validation, svm, treesklearn. naive_bayes import MultinomialNBsklearn.pipeline import Pipelinesklearn.feature_extraction.text import CountVectorizersklearn.neighbors import KNeighborsClassifiersklearn.feature_extraction.text import TfidfTransformersklearn.multiclass import OneVsRestClassifiersklearn import preprocessingsklearn.linear_model import SGDClassifierrandomwarningsdatetime import datetimesklearn.grid_search import GridSearchCV.filterwarnings ( ignore )={

linear raquo ;: LinearSVC (),

linearWithSGD raquo ;: SGDClassifier (),

rbf raquo ;: SVC (kernel= rbf raquo ;, probability=True),

poly raquo ;: SVC (kernel= poly raquo ;, probability=True),

sigmoid raquo ;: SVC (kernel= sigmoid raquo ;, probability=True),

bayes raquo ;: MultinomialNB ()

}={

linearWithSGD raquo ;: linear SVM with SGD training ,

linear raquo ;: linear SVM without SGD training ,

rbf raquo ;: SVM with RBF kernel ,

poly raquo ;: SVM with polynomial kernel ,

sigmoid raquo ;: SVM with sigmoid kernel ,

bayes raquo ;: Naive Bayes classifier

}replacer(text):str(str(text).replace(laquo;ulaquo;raquo;,laquo;raquo;).replace(laquo;raquo;raquo;, )) workMode (fileIn, toPredict, fileOut, classif):=pd.read_csv (fileIn, header=0, encoding= utf - 8-sig ) _ test=pd.read_csv (toPredict, header=0 , encoding= utf - 8-sig ) _ train=[] _train=[] _test=[] i in work [[i for i in list (work.columns.values) if

i.startswith(laquo;Changeraquo;)]].values:_train.append(laquo;,raquo;.join(i.T.tolist()))_train =Np.array (X_train) i in work [[i for i in list (work.columns.values) if

i.startswith ( Corax )]]. values: _train.append (list (i)) i in work_test [[i for i in list (work_test.columns.values) if

i.startswith(laquo;Changeraquo;)]].values:_test.append(laquo;,raquo;.join(i.T.tolist()))_test =Np.array (X_test)=preprocessing.MultiLabelBinarizer ()=lb.fit_transform (y_train) ( Getting results of classifier )=Pipeline ([( vectorizer raquo ;, CountVectorizer ()), ( tfidf raquo ;,

TfidfTransformer ()), ( clf raquo ;, OneVsRestClassifier (selClassifiers [classif]))]). fit (X_train, Y)=classifier.predict (X_test) _labels=lb.inverse_transform (predicted )=DataFrame.from_items ([( Change raquo ;, X_test), ( Prediction , all_labels)]). Prediction=df.Prediction.map (replacer) .to_csv (fileOut) testMode (fileIn, fileOut, classif) :=pd.read_csv (fileIn, header=0, encoding= utf - 8-sig )=random.sample (list (df.index), int (len (df) * 0.9))=df.ix [ rows] _test=df.drop (rows) _train=[] _train=[] _test=[] _test=[] i in work [[i for i in list (work.columns.values) if

i.startswith(laquo;Changeraquo;)]].values:_train.append(laquo;,raquo;.join(i.T.tolist()))_train =Np.array (X_train) i in work [[i for i in list (work.colum...


Назад | сторінка 23 з 24 | Наступна сторінка





Схожі реферати:

  • Реферат на тему: The essence of democracy and its core values
  • Реферат на тему: This is a list of problems facing society today
  • Реферат на тему: My work at the foreign trade company
  • Реферат на тему: The types of extracurricular work in approach of foreign language
  • Реферат на тему: The life and work of the self-employed socialist intellectual, Humphrey McQ ...