of CFCs were substantially restricted by the 1987 Montreal Protocol on Substances That Deplete the Ozone Layer, which the US is implementing through the 1990 Amendments to the Clean Air Act. As a result of these commitments, the manufacture of Freon in the US ended in 1995 and its emissions to the air in the United States from large users fell by nearly 60% between 1991 and 2002. The emissions from the Paducah gaseous diffusion plant, however, have remained virtually constant over this time, falling just over 7% between 1989 and 2002. In 2002, the Paducah enrichment plant emitted more than 197.3 metric tons of Freon into the air through leaking pipes and other equipment. This single facility accounted for more than 55% of all airborne releases of this ozone depleting CFC from all large users in the entire United States in 2002. Due to the lack of additional manufacturing of Freon since 1995, the US Enrichment Corporation is currently looking for a non-CFC coolant to use. Likely candidates would still have heat trapping potential, and thus even if they were not as dangerous to the ozone layer, they would still remain a potential concern in relation to global warming and climate change. p> The high heat signature of gaseous diffusion plants makes it possible that plants operating significantly in excess of 100 MTSWU per year could be detected. However, this information would likely only be meaningful as a way of identifying operations at known plants and not for uncovering clandestine facilities since there are many industrial processes that generate a great deal of heat. Thus, while gaseous diffusion plants are perhaps one of the hardest types of uranium enrichment facility to hide given their size, electricity needs, and heat signature, it would still be difficult to remotely identify a facility without access to environmental samples from the surrounding area. <В
2.2 Gas Centrifuge
Gas centrifuges are the most commonly used technology today for enriching uranium. The technology was considered in the US during the Manhattan Project, but gaseous diffusion and electromagnetic separation were pursued instead for full scale production. The centrifuge was later developed in Russia by a team lead by Austrian and German scientists captured during the Second World War. The head of the experimentation group in Russia was eventually released and took the centrifuge technology first to the United States and then to Europe where he sought to develop its use in enriching commercial nuclear fuel. p> The centrifuge is a common technology used routinely in a variety of applications such as separating blood plasma from the heavier red blood cells. In the enrichment process, uranium hexafluoride gas is fed into rapidly spinning cylinders. In order to achieve as much enrichment in each stage as possible, modern centrifuges can rotate at speeds approaching the speed of sound. It is this feature that makes the centrifuge process difficult to master, since the high rate of revolution requires that the centrifuge be sturdy, nearly perfectly balanced, and capable of operating in such a state for many years without maintenance. Inside the rotating centrifuge, the heavier molecules containing U-238 atoms move preferentially towards the outside of the cylinder, while the lighter molecules containing U-235 remain closer to the central axis. The gas in this cylinder is then made to circulate bottom to top driving the depleted uranium near the outer wall towards the top while the gas enriched in U-235 near the center is driven towards the bottom. These two streams (one enriched and one depleted) can then be extracted from the centrifuge and fed to adjoining stages to form a cascade just as was done with the diffusers in the gas diffusion plants. A schematic diagram of such a centrifuge is shown in Figure 4 below. <В
Figure 4: A schematic diagram of the cross section of a single gas centrifuge. br/>
The rotating cylinder forces the heavier U-238 atoms towards the outside of the centrifuge while leaving the lighter U-235 more towards the middle. A bottom to top current allows the enriched and depleted streams to be separated and sent via pipes to subsequent stages. Like the gas diffusion process, it requires thousands to tens of thousands of centrifuge stages to enrich commercially or militarily significant quantities of uranium. In addition, like the gas diffusion plants, centrifuge plants require the use of special materials to prevent corrosion by the uranium hexafluoride, which can react with moisture to form a gas of highly corrosive hydrofluoric acid. One of the most important advantages to the gas centrifuge over the gas diffusion process, however, is that it requires 40 to 50 times less energy to achieve the same level of enrichment. The use of centrifuges also reduces the amount of waste heat generated in compressing the gaseous UF 6 , and thus reduces the a...