Теми рефератів
> Реферати > Курсові роботи > Звіти з практики > Курсові проекти > Питання та відповіді > Ессе > Доклади > Учбові матеріали > Контрольні роботи > Методички > Лекції > Твори > Підручники > Статті Контакти
Реферати, твори, дипломи, практика » Новые рефераты » Nonlinear multi-wave coupling and resonance in elastic structures

Реферат Nonlinear multi-wave coupling and resonance in elastic structures





es; are the wave amplitudes defined by the ordinary differential equations


(7).


Here


В 

stands for a coefficient containing parameters of the wave-number detuning:, which, in turn, cannot be zeroes; are the cyclic frequencies of bending oscillations at ; Denote the critical values ​​of Euler forces.

Equations (7) describe the early evolution of waves at the expense of multi-mode parametric interaction. There is a key question on the correlation between phase orbits of the system (7) and the corresponding linearized subset


(8),


which results from eqs. (7) at. In other words, how effective is the dynamical response of the system (7) to the small parametric excitation?

First, we rewrite the set (7) in the equivalent matrix form:, where is the vector of solution, denotes the matrix of eigenvalues, is the matrix with quasi-periodic components at the basic frequencies. Following a standard method of the theory of ordinary differential equations, we look for a solution to eqs. (7) in the same form as to eqs. (8), where the integration constants should to be interpreted as new sought variables, for instance, where is the vector of the nontrivial oscillatory solution to the uniform equations (8), characterized by the set of basic exponents. By substituting the ansatz into eqs. (7), we obtain the first-order approximation equations in order:


.


where the right-hand terms are a superposition of quasi-periodic functions at the combinational frequencies. Thus the first-order approximation solution to eqs. (7) should be a finite quasi-periodic function, when the combinations; otherwise, the problem of small divisors (Resonances) appears. p> So, one can continue the asymptotic procedure in the non-resonant case, i. e. , To define the higher-order correction to solution. In other words, the dynamical perturbations of the system are of the same order as the parametric excitation. In the case of resonance the solution to eqs. (7) cannot be represented as convergent series in. This means that the dynamical response of the system can be highly effective even at the small parametric excitation.

In a particular case of the external force, eqs. (7) can be highly simplified:

(9)


provided a couple of bending waves, having the wave numbers and , Produces both a small wave-number detuning (ie) and a small frequency detuning (i. e. ). Here the symbols denote the higher-order terms of order, since the values ​​of and are also supposed to be small. Thus, the expressions


;


can be interpreted as the phase matching conditions creating a triad of waves consisting of the primary high-frequency longitudinal wave, directly excited by the external force, and the two secondary low-frequency bending waves parametrically excited by the standing longitudinal wave.

...


Назад | сторінка 3 з 8 | Наступна сторінка





Схожі реферати:

  • Реферат на тему: Word order and inversion
  • Реферат на тему: Система інтелектуального будинку Z-Wave: перше знайомство
  • Реферат на тему: Participation in assets as a solution to the debt crises
  • Реферат на тему: Особливості перекладу наказового способу в англійській мові на прикладі ром ...
  • Реферат на тему: To the question about understanding of the system of the sciences of modern ...