align="justify"> Зразки таких схем показані на рис. 1 цього посібника. Є схеми обміру і в підручнику. p align="justify"> При складанні схеми стовбура насамперед виділяють його вершинну частина, тому що в ній значно порушується правильність форми, що може значно вплинути на точність визначення всього обсягу стовбура.
Місце В«відсіканняВ» вершинки доцільно вибрати з таким розрахунком, щоб діаметр її заснування був у межах 3-6 см, а довжина В«обезвершіненнойВ» частини дорівнювала парним числом метрів. Якщо дотримати цю умову (щодо довжини), то при використанні як простих, так і складних формул обсяг вершинки буде потрібно визначати лише один раз. p align="justify"> Для використання простої формули серединного перерізу (формула Губера) необхідно знати величину діаметра на середині обезвершіненной частини стовбура, а для використання простих формул Смаліана і Рикке-Сімпсона - додатково до цього ще й діаметр в місці відсікання вершинки. Ці діаметри у вихідних даних можуть бути не наведено. Тому в таких випадках їх визначають шляхом інтерполяції як середнє значення між найближчими діаметрами, наведеними у вихідних даних. Відповідно діаметрам знаходять площі перетинів і підставляють їх у формули. p align="justify"> Площі перерізів можна знайти за формулою площі круга
В
але зазвичай цього розрахунку не роблять, а користуються допоміжними таблицями. Така таблиця наведена в В«Лісовій допоміжної книжціВ» (табл. 1, с. 19), мається вона і в інших лесотаксационних довідниках. Обсяг вершинки стовбура визначають за формулою обсягу конуса
Vверш = gL (h/3)
де gL, - площа підстави вершинки, м2;
h - висота вершинки, м.
Всі значення обсягів, як в корі, так і без кори, розраховують в кубічних метрах, з точністю до 0,0001 м3. Обсяги стовбура, обчислені за різними формулами, найчастіше виявляються не однаковими за своєю величиною. Тому отримані результати розрахунків за формулами слід проаналізувати. Аналіз полягає у визначенні абсолютних і відносних розбіжностей наближеного обсягу стовбура розрахованого за простих формулах, з більш точним об'ємом 'обчисленим за складною формулою серединних перерізів. Обсяг розрахований за складною формулою, не можна назвати істинним: він теж відрізняється від фактичного обсягу стовбура. Але як показали спеціальні дослідження, результати розрахунків за складною формулою відрізняються від справжніх обсягів, встановлених ксілометріческім способом, найчастіше не більше ніж на В± 2%. Встановивши абсолютні і відносні похибки наближеного визначення обсягу стовбура, слід зробити висновок про те, які прості формули дають перебільшення обсягів і які - занижують обсяг стовбура. Необхідно також дати пояснення цим явищам. Всі розрахунки і записи в виконуваних завданнях доцільно вести олівцем. p> Приклад виконання завдання
Варіант 45
Вихідні дані:
D1, 3 = 28,1 см (без кори); H = 25,6 м; порода - сосна.
...