Теми рефератів
> Реферати > Курсові роботи > Звіти з практики > Курсові проекти > Питання та відповіді > Ессе > Доклади > Учбові матеріали > Контрольні роботи > Методички > Лекції > Твори > Підручники > Статті Контакти
Реферати, твори, дипломи, практика » Новые рефераты » Nanotechnologies

Реферат Nanotechnologies





to form small objects able to do things. Some are enzymes, machines that build up and tear down molecules (and copy DNA, transcribe it, and build other proteins in the cycle of life). Other proteins are hormones, binding to yet other proteins to signal cells to change their behavior. Genetic engineers can produce these objects cheaply by directing the cheap and efficient molecular machinery inside living organisms to do the work. Whereas engineers running a chemical plant must work with vats of reacting chemicals (which often misarrange atoms and make noxious byproducts), engineers working with bacteria can make them absorb chemicals, carefully rearrange the atoms, and store a product or release it into the fluid around them. Genetic engineers have now programmed bacteria to make proteins ranging from human growth hormone to rennin, an enzyme used in making cheese. The pharmaceutical company Eli Lilly (Indianapolis) is now marketing Humulin, human insulin molecules made by bacteria. <В 

Existing Protein Machines


These protein hormones and enzymes selectively stick to other molecules. An enzyme changes its target's structure, then moves on; a hormone affects its target's behavior only so long as both remain stuck together. Enzymes and hormones can be described in mechanical terms, but their behavior is more often described in chemical terms. But other proteins serve basic mechanical functions. Some push and pull, some act as cords or struts, and parts of some molecules make excellent bearings. The machinery of muscle, for instance, has gangs of proteins that reach, grab a "rope" (Also made of protein), pull it, then reach out again for a fresh grip; whenever you move, you use these machines. Amoebas and human cells move and change shape by using fibers and rods that act as molecular muscles and bones. p> A reversible, variable-speed motor drives bacteria through water by turning a corkscrew-shaped propeller. If a hobbyist could build tiny cars around such motors, several billions of billions would fit in a pocket, and 150-lane freeways could be built through your finest capillaries. Simple molecular devices combine to form systems resembling industrial machines. In the 1950s engineers developed machine tools that cut metal under the control of a punched paper tape. A century and a half earlier, Joseph-Marie Jacquard had built a loom that wove complex patterns under the control of a chain of punched cards. Yet over three billion years before Jacquard, cells had developed the machinery of the ribosome. Ribosomes are proof that nanomachines built of protein and RNA can be programmed to build complex molecules. Then consider viruses. One kind, the T 4 phage, acts like a spring-loaded syringe and looks like something out of an industrial parts catalog. It can stick to a bacterium, punch a hole, and inject viral DNA (Yes, even bacteria suffer infections). Like a conqueror seizing factories to build more tanks, this DNA then directs the cell's machines to build more viral DNA and syringes. Like all organisms, these viruses exist because they are fairly stable and are good at getting copies of themselves made. Whether in cells or not, nanomachines obey the universal laws of nature. Ordinary chemical bonds hold their atoms together, and ordinary chemical reactions (guided by other nanomachines) assemble them. Protein molecules can even join to form machines without special help, driven only by thermal agitation and chemical forces. By mixing viral proteins (and the DNA they serve) in a test tube, molecular biologists have assembled working T 4 viruses. This ability is surprising: imagine putting automotive parts in a large box, shaking it, and finding an assembled car when you look inside! Yet the T 4 virus is but one of many self-assembling structures. Molecular biologists have taken the machinery of the ribosome apart into over fifty separate protein and RNA molecules, and then combined them in test tubes to form working ribosomes again. To see how this happens, imagine different T 4 protein chains floating around in water. Each kind folds up to form a lump with distinctive bumps and hollows, covered by distinctive patterns of oiliness, wetness, and electric charge. p> Picture them wandering and tumbling, jostled by the thermal vibrations of the surrounding water molecules. From time to time two bounce together, then bounce apart. Sometimes, though, two bounce together and fit, bumps in hollows, with sticky patches matching; they then pull together and stick. In this way protein adds to protein to make sections of the virus, and sections assemble to form the whole. Protein engineers will not need nanoarms and nanohands to assemble complex nanomachines. Still, tiny manipulators will be useful and they will be built. Just as today's engineers build machinery as complex as player pian...


Назад | сторінка 3 з 9 | Наступна сторінка





Схожі реферати:

  • Реферат на тему: The Business Cycles as a Form of Economic Development
  • Реферат на тему: China Airlines as a complex system
  • Реферат на тему: Chemical element Niobium
  • Реферат на тему: Розробка та реалізація плану досліджень (на прикладі компанії La Ruth Chemi ...
  • Реферат на тему: Abstract work THE PROBLEM OF PROTECTION OF HUMAN RIGHTS AS THE MOST IMPORTA ...