hat IR light can be emitted and absorbed during rotational transitions, and these transitions can also be produced by collisional energy transfer. Clouds are also very important infrared absorbers. Therefore, water has multiple effects on infrared radiation, through its vapor phase and through its condensed phases. Other absorbers of significance include methane, nitrous oxide and the chlorofluorocarbons.
Discussion of the relative importance of different infrared absorbers is confused by the overlap between the spectral lines due to different gases, widened by pressure broadening. As a result, the absorption due to one gas cannot be thought of as independent of the presence of other gases. One convenient approach is to remove the chosen constituent, leaving all other absorbers, and the temperatures, untouched, and monitoring the infrared radiation escaping to space. The reduction in infrared absorption is then a measure of the importance of that constituent. More precisely, define the greenhouse effect (GE) to be the difference between the infrared radiation that the surface would radiate to space if there were no atmosphere and the actual infrared radiation escaping to space. Then compute the percentage reduction in GE when a constituent is removed. The table below is computed by this method, using a particular 1-dimensional model of the atmosphere. More recent 3D computations lead to similar results.
Gas removed
percent reduction in GE
H 2 O
CO 2
O 3
36%
12%
3%
By this particular measure, water vapor can be thought of as providing 36% of the greenhouse effect, and carbon dioxide 12%, but the effect of removal of both of these constituents will be greater than 48%. An additional proviso is that these numbers are computed holding the cloud distribution fixed. But removing water vapor from the atmosphere while holding clouds fixed is not likely to be physically relevant. In addition, the effects of a given gas are typically nonlinear in the amount of that gas, since the absorption by the gas at one level in the atmosphere can remove photons that would otherwise interact with the gas at another altitude. The kinds of estimates presented in the table, while often encountered in the controversies surrounding global warming, must be treated with caution. Different estimates found in different sources typically result from different definitions and do not reflect uncertainties in the underlying radioactive transfer.
When Do You Send Greenhouse Gases into the Air
Whenever you ...
Watch TVUse a Hair Dryer
Use the Air ConditionerRide in a Car
Turn on a LightPlay a Video Game
Listen to ...