) для окремоно Значення y:
;
б) для математичного сподівання y:
.
Для розрахунків доповніті розрахунково табл. 2.1 графами:
В
Продовження табл.2.1
№ спостереження
(розрах. за (2.19))
(розрах.за (2.19))
1
11
12
1
2
...
n
Сума
х
х
Середнє Значення
х
х
прогнозні значення
8. Зробити Висновки щодо:
1) Економічної інтерпретації параметрів МОДЕЛІ;
2) інтерпретації коефіцієнта кореляції;
3) адекватності побудованої МОДЕЛІ;
4) прогнозом сертифіката №.
Оформити звіт про Виконання лабораторної роботи.
Завдання для Самостійної роботи студентов
Завдання 2.1
Віконаті Завдання лабораторної роботи № 2 на Основі даніх спостереження (табл 2.3):
В
Таблиця 2.3
вихідні дані для Побудова простої лінійної регресійної МОДЕЛІ
№ спостереження
Незалежна змінна Х
Залежна зміннаY
1
0,12
625
2
0,15
624
3
0,19
362
4
0,12
580
5
0,25
425
6
0,60
АBC
прогнозні значення
0.90
(abc - Три Останні цифри шифру студента)
Завдання 1.2
Припустиме, что Ві збіраєте дані про летний продажів Фірмою ПРОДУКЦІЇ (y) i суми, Які вітрачено на наукові дослідження (x). Ві маєте таку статистику:
cov (x, y) = 300;
var (y) = 125;
var (x) = 880.
середній летний продажів () = 1200.
Середня сума витрат на наукові дослідження () = 895.
Підрахуйте коефіцієнт кореляції между продажем и сумою, використаних на наукові дослідження. Візначте коефіцієнт детермінації. Знайдіть параметри регресії та. p> Завдання 1.3
Проведено оцінку регресії та розраховані SSE та SSR:
SSE = 53.27
SSR = 202.91.
розрахо SST, R 2 , r. p> Завдання 1.4
Вивчаючи зміну Попит на товар перелогових від его Ціни, ОТРИМАНО Такі результати:
;
;
;
;
;
n = 4.
Фірма встановлює на товар Ціну: 1,75 грн. Спрогнозуйте Попит и спонукало 95%-й Інтервал довіри для математичного сподівання прогнозу.
Завдання 1.5
Ві оцінюєте таку регресію:
;
;
n = 28;
.
Перевірте значімість нахилится при 95%-ному Рівні довіри.
спонукало 90%-ний Інтервал довіри для нахилится. p> Завдання 1.6
На якові Додатковий оплату может очікуваті особа, яка навчаюсь додатково 1 рік, ЯКЩО співвідношення между заробітною платою (в грн.) - y и освітою (у роках) - x має вигляд:
.
Завдання 1.7
Припустиме, что Ві підрахувалі кореляцію между двома Випадкове зміннімі, яка дорівнює 0.62. Если для ОЦІНКИ коефіцієнта кореляції Було використан 25 СПОСТЕРЕЖЕННЯ, Використана 5%-ний рівень значімочті, щоб перевіріті значімість коефіцієнта кореляції.
Завдання 1.8
Припустиме, что Ві оцінюєте залежність доходу відповідно до кількості років навчання, вікорістовуючі 30 СПОСТЕРЕЖЕННЯ. Середньоквадратічні ...