азінкіна, Н.М. Розвиток мови англійської наукової літератури.? М .: Наука, 1978.? 212 с.
. Рябцева, Н.К. Наукова мовлення англійською мовою. Керівництво по науковому викладу. Словник обертів і сполучуваності загальнонаукової лексики: Новий словник-довідник активного типу (англійською мовою).? М .: Флинта: Наука, +1999.? 600 с.
. Смолович, С.Ф. Атрибутивні словосполучення в англійській мові та їх переклад на російську мову [WWW document]. URL # justify gt ;. Стилістичний енциклопедичний словник російської мови/під. ред. М. Н. Кожиной.- 2-е изд., Испр. і доп.- М .: Флинта: Наука, 2006. - 696 с.
. Теорія і практика англійської наукової мови/Г.І. Ахманова, О.І. Богомолова, Є.В. Брагіна та ін./Під ред. М.М. Глушко.? М .: Видавництво Московського університету, 1987.? 240 с.
. Хомутова, Т.Н. Мова для спеціальних цілей (LSP): Лінгвістичний аспект//Известия Російського державного педагогічного університету ім. А.И.Герцена.? 2008.? №71.? С. 96? 106.
. Хлистова, А.В. Науковий стиль. Про відбулася передзахисті [WWW document]//Мова і текст langpsy. 2014. №1. URL: # justify gt ;. ABBYY Lingvo 13.0 Multilingual Electronic Dictionary for PC and Pocket PC [Електронний ресурс]/CD-ROM, +2009.
. Alred, G. J. Handbook of technical writing/G.J. Alred, Ch.T. Brusaw, W.E. Oliu.? 9th ed.? St. Martin's Press, 2008.? 624 p.
. Cargill, M. Writing scientific research articles: strategy and steps/M. Cargill, P. O Connor.? Wiley-Blackwell, 2009.? 184 p.
. Crystal, D. The Cambridge Encyclopedia of the English Language.? Cambridge University Press, 1995.? 490 p.
. Glasman-Deal, Н. Science research writing for non-native speakers of English.? London: Imperial College Press, 2010.? 272 p.
. Kubica, J. Fast and robust track initiation using multiple trees [WWW document] .URL http://cs.cmu.edu/~jkubica/papers/kubica_tr0462.pdf.
. Wallwork, A. English for research: usage, style, and grammar.? Springer, 2012.? 268 p.
Додаток
and robust track initiation using multiple treesthis paper we examine a fundamental problem in many tracking tasks: track initiation (also called linkage). This problem consists of taking sets of point observations from different time steps and linking together those observations that fit a desired model without any previous track estimates. In general this problem suffers from a combinatorial explosion in the number of potential tracks that must be evaluated.introduce a new methodology for track initiation that exhaustively considers all possible linkages. We then introduce an exact multiple kd-tree algorithm for tractably finding all of the linkages. We compare this approach to an adapted version of multiple hypothesis tracking using spatial data structures and show how the use of multiple trees can provide a significant benefit.fundamental task in tracking is to determine which observations at different time steps correspond to the same underlying object. The linkage or track initiation problem consists of making these determinations without any previous track estimates. Figure 1illustrates the computational problem that we are trying to solve. Observations from five equally spaced time steps are shown on a single image with observations from different time steps represented as different shapes. The goal is to take the raw data (Figure 1.A) and find sets of observations that correspond to the desired motion model (Figure 1.B). The difficulty arises from the combinatorics of such a search.
Figure 1: The linkage problem is to find one point at each time step such that the points fit the model for a candidate track. Points from each of the five different time steps are shown as different shapes (square? Circle? Triangle? Diamond? Plus). Two linear linkages are shown (B) and a third is left as an exercise for the reader.
is an important problem in such fields as target tracking and computer vision, but our primary motivating example in this paper is the asteroid linkage problem. Here we wish to determine which observed objects correspond to the same true underlying object from a series of visual observations of the night sky. These linkages can then be used to determine tentative orbits, attribute the observations to a known orbit, and assess the potential risk of an asteroid. The use of new observation techniques and equipment has increased the scope and accuracy of this problem, providing the potential to track hundreds of thousands of asteroids. The next generation of sky surveys, such as PanSTARRS or LSST, are designed to provide vast amounts of observation...