(- 1);=0; D (k) == 0=0;=1; f == 0D (2) lt; 0 (2)=D (2) +12; (1)=D (1) -1; D (3) lt; 0=or (clock1 (2) == 1, clock1 (2) == 3);=or (clock1 (2) == 5, clock1 (2) == 7);= or (clock1 (2) == 8, clock1 (2) == 10);=clock1 (2) == 12;=or (A1, A2);=or (A3, A4);=or (A5, A6 );=or (clock1 (2) == 4, clock1 (2) == 6);=or (clock1 (2) == 9, clock1 (2) == 11);=or (B1, B2); =and (clock1 (2) == 2, fix (clock1 (1)/4) ~=(clock1 (1)/4));=and (clock1 (2) == 2, fix(clock1(1)/4)==clock1(1)/4);A_clock3=31;B_clock3=30;C_clock3=28;E_clock3=29(3)=D(3)+max_clock3;(2)=D(2)- 1; D (4) lt; 0 (4)=D (4) +24; (3)=D (3) - 1; D (5) lt; 0 (5)=D (5) +60; (4)=D (4) - 1; D (6) lt; 0 (6)=D (6) +60; (5)=D (5) - 1;=D;
end
функція Equality
% EQUALITY (X1, X2, M, N) returns 1 if X1=X2 or 0 in all other cases.
% Equality in this fucntion is defined to M by absolute accuracy
% or to Nth decimal place N=1,2,3 ...
% There are two accuracy parameters. M and N are used as in rule logical OR
% in this function.
%
% Parameters X1, X2, M, N are able to be scalars or row matrixes. X1, X2,
% M, N numbers of dimension should be equal then.
%
% There are some requirements for parametres M and N.
% It should be:
% N gt;=1 and N - integer; M - positive.
%
%
% Example for scalar X1, X2, M, N:
%
% gt; gt; equality (0.1722, 0.1721, 0.000001, 3)
%
% ans=
%
% 1
%
% gt; gt;
%
%
% here:
% 0.1722, 0.1721 - compared numbers
% 0.000001 - absolute accuracy
% 3 - number or decimal placesy=f(x1,x2,m,n)=size(x1);=size(x2);=size(m);=size(n);=(s1==s2);=(length(C1)==sum(C1));=(s2==s3);=(length(C2)==sum(C2));=(s3==s4);=(length(C3)==sum(C3));=(s1(1)==1);=(fix(n)==n);=sum(C5);=((s4(1)*s4(2))==sum(C5));=(ngt;=1);=sum(C6);=((s4(1)*s4(2))==sum(C6));=(mgt;0);=sum(C7);=((s3(1)*s3(2))==sum(C7));C1amp;C2amp;C3amp;C4amp;C5amp;C6amp;C7i=1:1:s1(2)(x1(i)==x2(i))(i)=1;(x1(i)*x2(i)lt;=0)amp;((abs(x1(i)-x2(i)))lt;m(i))(i)=1;(x1(i)*x2(i)lt;=0)amp;((abs(x1(i)-x2(i)))gt;=m(i))(i)=0;(i)=((abs((x1(i)-x2(i))/(x1(i)+x2(i))))lt;(1/(10^n(i))))|((abs(x1(i)-x2(i)))lt;m(i));=C;(laquo;nraquo;)(laquo;Error:nraquo;)(laquo;Incorrect parameters X1, X2, M, N or its numbers n ) ( of dimension aren t equal, in function EQUALITY (X1, X2, M, N) n )
y=NaN;
функція PH_point
% PH_point=f (mn, A, T, sv, pc, m, n, min_pn, min_mtd, max_rtd, df, pf)
%
% mn - model name (name of model you're working at.)
% A - amplitude of input Meander-line signal you're giving to system.
% T - period of input Meander-line signal you're giving to system.
% st - state vector (state vector of system.)
% pc - phase coordinate (vector phase coordinate you're taking up.)
% m - absolute accuracy
% n - accuracy by decimal places n=1,2,3 ...
% min_pn - minimum period number.
% min_mtd - minimum model time duration.
% max_rtd - maximum real time duration.
% df - duration flag.
% pf - printing flag.
%
% returns X * (T) vector of Simlulink system model name
%
% Property:
% All parameters should be a variable of Workspace, so it can be defined
% in a session or m - script file of MATLAB before begining work.PH_point=f (mn, A, T, sv, pc, m, n, min_pn, min_mtd, max_rtd, df, pf ) A sv pc=(fix(n)==n)amp;(ngt;=1);=(mgt;0)amp;(max_rtdgt;0)amp;((df==0)|(df==1))amp;((pf==0)|(pf==1));=(Agt;0)amp;(min_mtdgt;0)amp;(min_pngt;=2)amp;(fix(min_pn)==min_pn);(mn,1/Inf);=size(m);=size(n);=(s1(1)==1);=(s2(1)==1);=(length(pc)==length(m))amp;(length(m)==length(n));=B1amp;B2amp;B3amp;B4amp;B5amp;B6;B=0;=clock;(mn,T/2);_min1=pc;=-A;(mn,T/2);
k=1; _pl1=pc; pf == 1
fprintf ( n ) ( Using PH_point for T =% g , T) ( c ) ( (Phase coordinate number is% g , length ( pc)) () n ) ( n ) index=1: 1: le...