ell-known for his simplicity in solving problems. Whenever possible, he avoided complicated mathematics and obtained quick results based on order of magnitude estimates. This quality was acknowledged by and influenced many physicists who worked with him, such as Hans Bethe, who spent two semesters working with Fermi in the early 1930s. Fermi also meticulously recorded his calculations in notebooks, and later used to solve many new problems that he encountered based on these earlier known problems.
When Fermi submitted his famous paper on beta decay to the prestigious journal Nature, the journal's editor turned it down because "it contained speculations which were too remote from reality ". Thus, Fermi saw the theory published in Italian and in German before it was published in English. Nature eventually did publish Fermi's report on beta decay on January 16, 1939.
He never forgot this experience and he always speaks: "Never be first; try to be second". <В
Nobel Prize & The Manhattan Project
Fermi remained in Rome until 1938.
In 1938, Fermi won the Nobel Prize in Physics for his "demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons ".
After Fermi received the Nobel prize in Stockholm, he, his wife Laura, and their children emigrated to New York. This was mainly because of the anti-Semitic laws promulgated by the fascist regime of Benito Mussolini which threatened Laura, who was Jewish. p> Soon after his arrival in New York, Fermi began working at Columbia University. p> In 1938, Fermi was without doubt the greatest expert on neutrons, and he continued his work on this topic on his arrival in the United States, where he was soon appointed Professor of Physics at Columbia University, N.Y. (1939-1942). p> In 1944, Fermi became American citizen, and at the end of the war (1946) he accepted a professorship at the Institute for Nuclear Studies of the University of Chicago, a position which he held until his untimely death in 1954. There he turned his attention to high-energy physics, and led investigations into the pion-nucleon interaction.
During the last years of his life Fermi occupied himself with the problem of the mysterious origin of cosmic rays, thereby developing a theory, according to which a universal magnetic field - acting as a giant accelerator - would account for the fantastic energies present in the cosmic ray particles.
Professor Fermi was the author of numerous papers both in theoretical and experimental physics. Several papers published in Rend. Accad. Naz. Lincei, 1927-28, deal with the statistical model of the atom (Thomas-Fermi atom model) and give a semiquantitative method for the calculation of atomic properties. 1934. p> The Nobel Prize for Physics was awarded to Fermi for his work on the artificial radioactivity produced by neutrons, and for nuclear reactions brought about by slow neutrons. The first paper on this subject was published by him in 1934. Fermi was member of several academies and learned societies in Italy and abroad. As lecturer he was always in great demand (he has also given several courses at the University of Michigan and Stanford University, Calif.). He was the first recipient of a special award of $ 50,000 - which now bears his name - for work on the atom.
Post-War Work
Fermi was widely regarded as the only physicist of the twentieth century who excelled both theoretically and experimentally. The well-known historian of physics, C. P. Snow, says about him, "If Fermi had been born a few years earlier, one could well imagine him discovering Rutherford's atomic nucleus, and then developing Bohr's theory of the hydrogen atom. Fermi's ability and success stemmed as much from his appraisal of the art of the possible, as from his innate skill and intelligence. He disliked complicated theories, and while he had great mathematical ability, he would never use it when the job could be done much more simply. He was famous for getting quick and accurate answers to problems which would stump other people. An instance of this was seen during the first atomic bomb test in New Mexico on July 16, 1945. He estimated that the blast was greater than 10 kilotons of TNT.Later on, this method of getting approximate and quick answers through back of the envelope calculations became informally known as the 'Fermi method'.
After the war, Fermi served for a short time on the General Advisory Committee of the Atomic Energy Commission, a scientific committee chaired by Robert Oppenheimer. After the detonation of the first Soviet fission bomb in August 1949, he, along with Isidor Rabi, wrote a strongly worded report for the committee which opposed the development of a hydrogen bomb on moral and tech...