кція:
В В
Імпульсна характеристика (представляється у вигляді таблиці):
В В
Графік АЧХ:
В В
Уявімо АЧХ у вигляді таблиці з 5 рядків і 10 стовпців:
Оцінимо точність апроксимації.
В В В
Для цього представимо абсолютну похибку у вигляді таблиці 5 на 10 елементів:
В В ul>
Бачимо, що для фільтра нижніх частот з такими н.у. і при N = 12 абсолютна похибка апроксимації методу частотної вибірки дорівнює 0.0255002.
В
В В
Розрахуємо фільтр методом розкладання в ряд Фур'є для N = 12.
<В
В В В
Уявімо АЧХ у вигляді таблиці з 5 рядків і 10 стовпців:
В
Оцінимо точність апроксимації.
Для цього представимо абсолютну похибку у вигляді таблиці 5 на 10 елементів:
В
Бачимо, що для фільтра нижніх частот з такими н.у. і при N = 12 абсолютна похибка апроксимації методу розкладання в ряд Фур'є дорівнює 0.0285909.
Графік ФЧХ:
В
Уявімо ФЧХ у вигляді таблиці 5 на 10 рядків:
В
Розрахуємо фільтр методом найменших квадратів для N = 12.
Метод найменших квадратів полягає в наступному:
В
Ця умова еквівалентно наступній системі рівнянь:
; m = 0,1, k
За допомогою цих коефіцієнтів отримуємо набір відліків імпульсної характеристики, і знаючи те, що вона симетрична (видно з таблиць імпульсної характеристики) можемо її побудувати. br/>В
В В
В
Графік АЧХ:
В
Уявімо АЧХ у вигляді таблиці з 5 рядків і 10 стовпців:
В
Оцінимо точність апроксимації.
Для цього представимо абсолютну похибку у вигляді таблиці 5 на 10 елементів:
В
Бачимо, що для фільтра нижніх частот з такими н.у. і при N = 12 абсолютна похибка апроксимації методу найменших квадратів дорівнює 0.0285909.
Графік ФЧХ:
В
В В
Уявімо ФЧХ у вигляді таблиці 5 на 10 рядків:
В В
Розрахуємо фільтр методом частотної вибірки для N = 16.
<В В
апроксимується функція:
В
Імпульсна характеристика (представляється у вигляді таблиці):
В
Графік АГЧ:
В
Уявімо АЧХ у вигляді таблиці з 5 рядків і 10 стовпц...