. Його обчислюють за формулою середньої арифметичної з індивідуальних індексів (1.4.11):
, або 94,4%
Середнє зниження випуску по всіх виробах склало 5,6%.
2. Аналогічно формулі (1.4.7) можемо записати:
В
Тоді = 1700-1800 = -100 Тис. руб. p> 3. Середня зміна собівартості виробів слід обчислити, використовуючи взаємозв'язок індексів:
I zq = I z Г— I q
Звідки
I z = I zq : I q
де за умовою задачі l. q = 1,3.
Тоді
I z = 1,3: 0,944 = 1,377, або 137,7%. br/>
Таким чином, середнє збільшення собівартості по всіх виробах склало 37,7%.
Приклад 1.4.3. Торгове підприємство здійснює продаж товарів А і Б. Ціна на товар А в порівнянні з попереднім тижнем зросла в 2 рази, а на товар Б не змінилася.
Визначте середня зміна цін, якщо частка товару А у виручці від продажу даної тижня склала 80%.
Рішення
Перетворимо формулу (1.4.12) для заміни абсолютних значень товарообігу звітного періоду відносними (частками):
В
Підстановка вихідних даних дасть результат 1,667, або 166,7%. Таким чином, середнє підвищення цін склало 66,7%. br/>
4. Індекси середнього рівня
За допомогою даних індексів вивчається динаміка середнього рівня якісного показника. Якісний показник при цьому характеризує одне і те ж явище (ціну, собівартість продукції, продуктивність праці тощо), яке спостерігається на різних ділянках. Середній рівень якісного ознаки залежить не тільки від самих осередненою величин, а й від складу (структури) сукупності, яка визначається за об'ємною ознакою.
Тому зміна середньої в часі залежить від зміни власне значень ознаки і від зміни структури сукупності.
Методику розрахунку індексів середнього рівня покажемо на прикладі індексів собівартості змінного, постійного складів та структурних зрушень.
Індекс собівартості змінного складу/ f (Середньої собівартості) обчислюється за формулою
(1.4.13)
При цьому абсолютна зміна середньої собівартості О”z визначається різницею між і даного індексу:
(1.4.14)
і показують відносне і абсолютна зміна середньої собівартості за рахунок двох чинників - середнього зміни власне собівартостей і зміни структури випуску продукції.
Індекс собівартості постійного складу, що характеризує зміну середньої собівартості за рахунок тільки собівартості, розраховують за формулою
(1.4.15)
Абсолютне зміна середньої собівартості за рахунок зміни тільки собівартості окремих видів продукції розраховуються за формулою
(1.4.16)
Індекс структурних зрушень I стр показує відносну зміну середньої собівартості за рахунок зміни структури випуску продукції на окремих ділянках і визначається за формулою
(1.4.17)
При цьому абсолютна зміна середньої собівартості за рахунок зазначеного чинника обчислюється за формулою
(1.4.18)
Обчислені за вказаними методиками показники взаємопов'язані, а саме:
Г— (1.4.19)
абсолютні прирости
Г— (8.20)
Приклад 1.4.4. Є такі дані (табл. 1.4.3). br/>
Таблиця 1.4.3 Виробництво продукту А
Підприємство
Собівартість, руб.
Випуск, шт.
у базисному періоді
у звітному періоді
у базисному періоді
у звітному періоді
1
2
50
80
60
90
500
1000
1000
1000
Визначте:
1) індекси собівартості змінного, постійного складів і структурних зрушень;
2) абсолютні прирости середньої собівартості по двох чинникам разом і по кожному фактору окремо.
Покажіть взаємозв'язок між показниками. Зробіть висновки. p> Рішення
1) Індекс собівартості змінного складу (формула 1.4.13)
, або 107,1%
індекс собівартості постійного складу (формула 1.4.15):
, або 115,4%
індекс структурних зрушень (формула 1.4.17):
= 65:70 = 0,928, або 92,8%. br/>
2) Абсолютний приріст середньої собівартості за рахунок двох факторів (формула 1.4.14): 75-70 = 5 руб.; p> абсолютний приріст середньої собівартості за рахунок середнього зросту власне собівартості (формула 1.4.16): 75-65 = 10 руб.;
...