рівнем імпульсних відліків. При цьому в якості верхньої межі динамічного діапазону Umax приймається напруга найбільшого за амплітудою відліку. Umax = 0.9 В.
Нижня межа діапазону:
= Umax/K; (2.2)
- заданий коефіцієнт. = 0.9/20 = 0.045 В;
g = 35.
Подальший розрахунок ведемо наступним чином.
Відомо, що:
кв = D2/12; D - крок шкали квантування.
D = Umax/nкв;
кв - число рівнів квантування.
Звідси:
;
При використанні двійкового кодування: кв = 2m; m - розрядність кодових комбінацій.
= log nкв; = log 34 = 6.
Тривалість елементарного кодового імпульсу t визначається виходячи з інтервалу дискретизації Dt і розрядності коду m. Тут необхідно ввести захисний інтервал, під який відведемо половину Dt. У результаті отримаємо вираз:
tи = Dt/(2 Г— m); (2.3)
tи = 4.42 Г— 10-5/12 = 3.68 Г— 10-6мкс.
Для розробки математичної моделі цифрового сигналу приймемо чотири кодових слова (коди чотирьох відліків). Числові константи сигналу визначаються за формулами (2.4) і (2.5). Математичне сподівання:
. (2.4)
Дисперсія:
. (2.5)
Обрана кодова послідовність:
Ймовірність нуля:
В
Ймовірність одиниці:
В
Розрахуємо математичне сподівання сигналу по (2.8).
В.
Дисперсія:
В.
Розрахуємо функцію автокореляції. При проведенні розрахунків скористаємося можливостями програми MathCAD. Поступимо таким чином. Випишемо чотири послідовності кодів, якими представляється Дискретизований сигнал; це буде послідовність нулів і одиниць. p> У середовищі MathCAD. створимо два вектори і. Далі скористаємося функцією. Після кожного вимірювання будемо зрушувати кодову послідовність вектора Vy на один знак. Проведемо сім розрахунків. Результати занесемо в таблицю 2.2
Таблиця 2.1 - Функція автокореляції кодового сигналу
t , мкс08.813.317.722.126.530.9Corr1-0 ,175-0 .0069-0.0069-0,175-0,175-0,175
У середовищі MathCAD по цій таблиці сформуємо два вектори Vt і Vk:
В
За допомогою функції cspline (Vt, Vk) обчислимо вектор VS других похідних при наближенні до кубічного поліному:
: = cspline (Vt, Vk)
В
Далі обчислюємо функцію, апроксимуючу функцію автокореляції:
kor ( t ): = interp (VS, Vt, Vk, t ).
Графік функції автокореляції
В
Рис. 2.2
Спектральні характеристики кодованого сигналу знаходяться на підставі...