d from 38,700 metric tonnes in 2005 to 44,500 tonnes in 2006. The world wide resources are estimated to be 4,400,000 tonnes. During the ten year period between 1995 and 2005, the production more than doubled starting from 17,800 tonnes in 1995. br/>
Applications
is estimated that out of 44,500 metric tons of niobium mined in 2006, 90% ended up in the production of high-grade structural steel, followed by its use in superalloys. The use of niobium alloys for superconductors and in electronic components account only for a small share of the production.is an effective microalloying element for steel. Adding niobium to the steel causes the formation of niobium carbide and niobium nitride within the structure of the steel. These compounds improve the grain refining, retardation of recrystallization, and precipitation hardening of the steel. These effects in turn increase the toughness, strength, formability, and weldability of the microalloyed steel. Microalloyed stainless steels have a niobium content of less than 0.1%. It is an important alloy addition to high strength low alloy steels which are widely used as structural components in modern automobiles. These niobium containing alloys are strong and are often used in pipeline construction.amounts of the element, either in its pure form or in the form of high-purity ferroniobium and nickel niobium, are used in nickel-, cobalt-, and iron-base superalloys for such applications as jet engine components, gas turbines, rocket subassemblies, and heat resisting and combustion equipment. Niobium precipitates a hardening ?''-Phase within the grain structure of the superalloy. The alloys contain up to 6.5% niobium. One example of a nickel-based niobium-containing superalloy is Inconel 718, which consists of roughly 50% nickel, 18.6% chromium, 18.5% iron, 5% niobium, 3.1% molybdenum, 0.9% titanium, and 0.4% aluminum. These superalloys are used, for example, in advanced air frame systems such as those used in the Gemini program.alloy used for liquid rocket thruster nozzles, such as in the main engine of the Apollo Lunar Modules, is C103, which consists of 89% niobium, 10% hafnium and 1% titanium. Another niobium alloy was used for the nozzle of the Apollo Service Module. As niobium is oxidized at temperatures above 400 В° C, a protective coating is necessary for these applications to prevent the alloy from becoming brittle.becomes a superconductor when lowered to cryogenic temperatures. At atmospheric pressure, it has the highest critical temperature of the elemental superconductors: 9.2 K. Niobium has the largest magnetic penetration depth of any element. In addition, it is one of the three elemental Type II superconductors, along with vanadium and technetium. Niobium-tin and niobium-titanium alloys are used as wires for superconducting magnets capable of producing exceedingly...