Авджі Н.І., Мартиненко Т.В.
Загальна постановка проблеми
В даний час вирішення завдань оптимізації перевізних процесів і забезпечення безпеки перевезень залізничним транспортом присвячено велику кількість наукових робіт. Завдання оптимізації перевізних процесів часто ділиться на підзадачі: скорочення експлуатаційних витрат, забезпечення зростання прибутку, оптимальне розміщення маршрутів руху складів, створення умов для розвитку залізничного транспорту. Крім перерахованих завдань, на сучасному рівні розвитку залізничного транспорту в Україні, очевидна необхідність в розвитку системи фірмового обслуговування клієнтів.
Аналіз літератури
Необхідність такої системи зумовлена ??спадом обсягів перевезень залізничним транспортом з причини збільшення частки автомобільного транспорту. Раніше розроблені алгоритми Юсіповим Р.А. в дисертації «Прогнозування показників в оперативних планах поїзної і вантажної роботи», Шапкіним І.М. «Організація залізничних перевезень на основі інформаційних технологій», Макаровим В.М. «Розробка та застосування математичної моделі оперативного прогнозування поїзної роботи» та іншими є не ефективними, тому що в них не враховується якість перевізного процесу.
Мета статті
Розробити модель вибору маршруту транспортування вантажу залізничним транспортом з однієї станції на іншу. Основним критерієм вибору маршруту розглядати вимоги до якості перевізного процесу і вимоги клієнта.
Розробка моделі
Оцінка деяких вимог клієнтів утруднена відсутністю даних (наприклад, збереження вантажу, безпека перевезення). Багато з вимог не можуть бути описані точними значеннями з причини неможливості формалізованого опису параметрів цих факторів або суб'єктивності окремих думок (наприклад, технічна якість складу, стан станції). Так як вимоги клієнтів до рівня якості володіють значною невизначеністю, в даній роботі пропонується використовувати кошти мурашиного алгоритму.
В умовах даної задачі в ролі мурашки виступає поїзд, який починаючи рух зі станції, повинен пройти по всіх зазначених точках; ребром є залізнична мережа між станціями, а вага ребра визначає відстань між ними. Моделювання поведінки мурах пов'язано з розподілом феромону на стежці - ребрі графа. При цьому ймовірність включення ребра в маршрут окремого мурашки пропорційна кількості феромону на цьому ребрі, а кількість відкладали феромону пропорційно довжині маршруту. Чим коротше маршрут, тим більше феромона буде відкладено на його ребрах, отже, більшу кількість мурах буде включати його в синтез власних маршрутів. Моделювання такого підходу, що використовує лише позитивний зворотний зв'язок, призводить до передчасної збіжності - більшість мурашок рухається по локально оптимальним маршрутом. Уникнути цього можна, моделюючи негативний зворотний зв'язок у вигляді випаровування феромону. При цьому якщо феромон випаровується швидко, то це призводить до втрати пам'яті колонії і забування хороших рішень, з іншого боку, великий час випаровування може привести до отримання стійкого локального оптимального рішення.
Цільова функція є складовою, тобто складається з двох частин: загальний час шляху (1) і якість перевізного процесу (2). Мінімізація кількості поїздок є більш привілейованої, ніж мінімізація часу.