Теми рефератів
> Реферати > Курсові роботи > Звіти з практики > Курсові проекти > Питання та відповіді > Ессе > Доклади > Учбові матеріали > Контрольні роботи > Методички > Лекції > Твори > Підручники > Статті Контакти
Реферати, твори, дипломи, практика » Курсовые обзорные » Програмування в Pascal. Моделювання 3D-об'єктів

Реферат Програмування в Pascal. Моделювання 3D-об'єктів





т, позитивна частина осі Y - знизу. p align="justify"> Для роботи з тривимірними об'єктами необхідна ще одна вісь - вісь Z (рис.2). Існує кілька варіантів тривимірних систем координат, зокрема, поширені так звані правостороння і лівостороння системи. br/>В 

Малюнок 2


Особливість цієї системи координат полягає в тому, що початок координат можна зіставити з лівим нижнім кутом монітора, позитивна частина осі X знаходиться праворуч від початку координат, позитивна частина осі Y - зверху, а позитивна частина осі Z - спереду. А це означає, що видима частина осі Z - це її негативна частина. Ця частина осі перебуває ніби В«в глибині монітораВ», в той час як позитивна частина знаходиться В«спереду монітораВ». У двовимірної системі координат існує поняття точки - її координати задаються двома значеннями - X і Y. Точки існують і в тривимірній системі координат - вони задаються вже трьома значеннями - X, Y, Z. p align="justify"> Точки використовують для того, щоб задавати координати вершин багатокутника (полігонів), зокрема - трикутників. Так, трикутник, заданий трьома крапками - A, B, C. Як правило, більш складні тривимірні об'єкти будуються саме з трикутників. p align="justify"> У тривимірній графіці існує таке поняття, як грань. Це - плоский об'єкт, який визначають кілька вершин. Звичайний трикутник - це саме грань. З декількох плоских граней можна зібрати об'ємний об'єкт. Чим більше трикутників використано при побудові моделі - тим більше деталізованої і складною вона виходить. Точки, що відповідають вершинам трикутника, який можна зобразити у тривимірному просторі, називаються вершинами. p align="justify"> Трикутник не випадково обраний в якості базової геометричної фігури - по-перше - цей багатокутник завжди є опуклим, по-друге - неможливо розташувати три точки, що не лежать на одній прямій таким чином, щоб вони не належали одній площині. Таким чином, трикутник - це фігура, яка завжди є опуклою і плоскою, що дозволяє з успіхом використовувати його в цілях тривимірної графіки. p align="justify"> Кілька граней, з яких складається тривимірний об'єкт, називаються сіткою. "Сітка" являє собою набір трикутників. p align="justify"> Ще одне поняття, важливе при роботі з тривимірною графікою - це поняття вектора. Вектор, так само як і крапка, може бути визначений трьома параметрами, однак він описує не положення в просторі, а напрямок і швидкість руху. Вектор має початок і кінець, для його повного визначення потрібно знати координати точки початку і кінця вектора, таким чином, замість трьох значень координат знадобиться вже шість значень. Однак якщо за замовчуванням прийняти за початок вектора початок координат (точку 0,0,0) - тоді для його визначення буде достатньо трьох точок. Напрямок вектора визначається положенням другої точки щодо першої (в даному випадку - положення точки кінця вектора, якої задається вектор відносно початку координат), а швидкість - довжино...


Назад | сторінка 5 з 16 | Наступна сторінка





Схожі реферати:

  • Реферат на тему: Розробка алгоритму розрахунку визначення координат точок кінематичної схеми ...
  • Реферат на тему: Визначення точки рівноваги прибутку і точки беззбитковості експлуатації вер ...
  • Реферат на тему: Програма обробки масивів координат точок на мові Сі
  • Реферат на тему: Визначення координат оптимального розташування двох складів у регіоні
  • Реферат на тему: Визначення параметрів електропривода Верстат з ЧПК з підпорядкованім РЕГУЛЮ ...