Завдання
Обсяг експериментальних даних n = 200.
Масив експериментальних даних наведено в табл. 1. br/>
Таблиця № 1.
Х 10 1. Виключення з масиву експериментальних даних помилок
Для виключення помилок з масиву використовуємо нерівність, яке визначається за допомогою четвертого центрального моменту, яке встановлює нижню межу ймовірності того, що ні при якому законі розподілу ймовірності випадкове значення результату вимірювання не відрізняється від середнього значення більш, ніж на половину довірчого інтервалу:
В В В
Визначимо верхню і нижню межі граничних значень відліків:
В В
Висновок: Перевірка показала, що відліки, отримані при вимірі, не виходять за верхню і нижню межі граничних значень відліків, отже помилок немає.
2. Отримання попереднього уявлення про характер закону розподілу ймовірності (ЗРВ) результату вимірювання
1. Для того щоб отримати інформацію про середньому значенні масиву експериментальних даних, використовуємо середнє арифметичне :
,
Висновок: середнє арифметичне, використовуємо для отримання оцінки незміщеної дисперсії і стандартного відхилення
Для того щоб оцінити розсіювання масиву експериментальних даних щодо середнього арифметичного, використовуємо несмещенную оцінку дисперсії і стандартне відхилення
В В
Висновок: Відомо, що дисперсія висловлює потужність розсіювання відносно постійною складовою, а стандартне відхилення, що має розмірність випадкової величини, є діючим значенням розсіювання випадкової величини.
Для того щоб оцінити асиметрію ЗРВ, визначимо оцінку третього центрального моменту , характеризує несиметричність розподілу. Оцінений третього центрального моменту визначається за формулою
Висновок: Третій центральний момент і його оцінка мають розмірність куба випадкової величини, тому для відносної характеристики асиметрії застосовують безрозмірний коефіцієнт асиметрії
В
Висновок: Для симетричних розподілів ЗРВ щодо математичного очікування. Проте в реальності може бути визначена тільки оцінка третього центрального моменту, яка, будучи випадковою величиною, може наближатися до нуля, але не бути рівної йому. У яких випадках можна вважати симетричним ЗРВ, якщо? p> Визначається параметр, що характеризує розсіювання оцінки коефіцієнта асиметрії ,
В
Для прийняття рішення про симетричність закону розподілу розглядається умова, то можна вважати ЗРВ симетричним, якщо ж, то несиметричністю ЗРВ нехтувати не можна.
Висновок: У даном...