ходимо розрахункові значення yiрасч (таблиця 3.2).
Таблиця 3.2 - Розрахункові значення кількість поїздів
xi123456789101112 ? yiрасч для лінійної завісімості8 ,988,718,448,177,97,637,367,096,826,556,286,01-yiрасч для параболи 2-го для лінійної для параболи 2-го
Графіки отриманих залежностей yiрасч = f (xi) представлені на малюнку 3.2.
В
Рисунок 3.2 - Кількість потягів, які пройшли по ділянці Валківська-
Барановичі по місяцях
Визначаємо залишкову варіацію за формулою (3.4) користуючись розрахунковими даними наведеними в таблиці 3.2:
для лінійної залежності:
В
для параболи другого порядку:
В
Так як 3,9122? 4,9045, приймаємо параболічну залежність, тобто
В
Визначаємо перспективне значення кількості поїздів, які пройшли по ділянці Валківська - Барановичі, прийнявши xперсп = 13, звідси
(поїздів).
На основі отриманих результатів перспективного значення кількості поїздів які пройшли по ділянці визначимо показники експлуатаційної надійності вагонів:
параметр потоку відмов
В
- напрацювання на відмову:
.
- ймовірність безвідмовного проходження поїздів по ділянці:
В
Аналіз отриманих результатів свідчить про те, що на гарантійному ділянці обсяг робіт має тенденцію до падіння. Цей результат дозволить надалі оцінити якість роботи ПТО. br/>
3.2 Встановлення і дослідження закону розподілу випадкової величини - напрацювання на відмову
Вихідні дані для розрахунку представлені в таблиці 3.3 (1991р-гальма).
Таблиця 3.3-Результати розрахунку напрацювання на відмову гальм по гарантійних дільницях Білоруської залізниці за 1991р.
Члени варіаційного ряду:
перший - 11032;
останній - 256348.
Кількість розрядів групування - відповідно до рекомендацій приймаємо k = 10.
Величина x, що приймає в залежності від деяких випадкових обставин одне із значень x1, x2, x3, ..., xn, що мають певні ймовірності p1, p2, p3, ..., pn, називається випадковою величиною (СВ) .
Випадкові величини бувають дискретними і безперервними (що мають як завгодно близькі можливі значення). Сукупність значень випадкових величин та відповідних ймовірностей називають розподілом випадкової величини. p align="justify"> Крива, що зображає щільність розподілу, називається кривою розподілу.
Основні властивості кривої розподілу:
, тобто вся крива лежить вище осі OX;
, тобто п...