даровані підлітки перейдуть на наступний рівень розвитку логічного мислення, тобто на рівень часткової логічної організації вивченого матеріалу, розуміння окремих його взаємозв'язків.
Щоб перевести учнів на рівень логічно організованих знань, розглянемо наступні завдання.
2. Нехай АВСD - квадрат, а А1У1С1 - правильний трикутник, вписані в коло радіуса R. Доведіть, що сума АВ + А1В1 дорівнює довжині півкола з точністю до 0,01R.
Малюнок 9
Нехай R - радіус кола. Тоді АВ=R; А1В1=R. Довжина півкола дорівнює L=3,14R.
;
Разом:
. Доведіть, що в кубі можна вирізати наскрізний отвір, через яке можна протягнути куб таких же розмірів.
Малюнок 10
Спроектуємо куб на площину так, щоб діагональ його була перпендикулярна цій площині:
.
Таким чином, сторона шестикутника дорівнює і ОН =. Таким чином, радіус вписаного кола дорівнює, тобто в неї можна вписати квадрат стороною, що явно більше. Що й потрібно було довести [3].
Вирішуючи аналогічні завдання на уроках геометрії в 9 класі, ми зможемо перевести обдарованих підлітків на останній рівень логічно організованих знань. Так як ми працюємо з обдарованими учнями, були підібрані завдання підвищеної труднощі.
Висновок
У результаті курсової роботи можна зробити висновок, що обдаровані підлітки - учні з особливою винятковістю, з більш високою, ніж у однолітків сприйнятливістю до навчання і більш вираженими творчими проявами. Однак, ці здібності, зокрема, логічне мислення необхідно розвивати, але розвинути їх зможе тільки вчитель з неабияким інтелектом, який стане для підлітка прикладом і доб'ється поваги, в першу чергу, знаннями. Інакше педагог не зможе стати авторитетом для обдарованих учнів 7-9 класів, не дивлячись ні на вік, ні на досвід роботи.
У результаті були виконані наступні завдання:
Наведено в систему рекомендації педагогів і психологів з оптимального розвитку логічного мислення обдарованих учнів 7-9 класів на уроках геометрії;
З'ясовано, яку роль відіграють навчальні завдання в навчання математики, зокрема, в геометрії.
Таким чином, враховуючи особливості обдарованих учнів-підлітків 7-9 класу, були підібрані завдання, що дозволяють перевести їх на наступний рівень розвитку логічного мислення, яких створює оптимальні умови не тільки для інтелектуального розвитку обдарованих учнів, залучених до педагогічний процес, а й підвищує загальний рівень математичної культури учнів, покращує їх успішність.
Однак одного підбору завдань, яким би він не був вдалим, ще не достатньо, щоб розвивати розумові здібності. Необхідна спеціальна робота над завданнями, у процесі якої учні повинні не тільки здобувати навички їх вирішення, але і виробляти вміння здійснювати розумові операції і прийоми.
Цю роботу повинен проводити вчитель. Для цього йому необхідно добре знати, як відбувається процес засвоєння знань, що являють собою розумові операції, як вони формуються і вдосконалюються в процесі навчання.
Список використаних джерел
1. Амонов П.К. Психологічні особливості розвитку математичного мислення в учнів 5-9 класів/П.К. Амонов.- М .: Просвещение, 1993. - 25 с.
. Ананьєв Б.Г. Формування обдарованості/Схильності і обдарованість/Б.Г. Ананьїв.- М: Педагогіка, 1962. - 74 с.
. Атанасян Л.С. Курс елементарної геометрії. Частина I. Планіметрія .: Навчальний посібник/Л.С. Атанасян та ін. - М .: Просвещение, 1975. - 176 с.
. Брушлинский А.В. Психологія мислення та проблемне навчання/А.В. Брушлинский.- М .: Знание, 1983. - 6-78 с.
. Веселовська Є.В. Педагогічна діагностика логічного мислення учнів: автореф. дис. канд. пед. наук/Є.В. Веселовська.- Волгоград. 2002. - 16 с.
. Гурова Л.Л. Психологія мислення/Л.Л. Гурова.- М .: ПЕР СЕ, 2005. - 52с.
. Давидов В.В. Проблеми навчання: Досвід теоретичного та експериментального психологічного дослідження/В.В. Давидов.- М .: Педагогіка. 1986. - 24 с.
. Дьюї Дж. Психологія і педагогіка мислення/Дж. Дьюї.- М .: Просвещение, 1999. - 65 с.
. Дьяченко, О. М. Обдарована дитина: навчальний посібник/О. М. Дьяченко.- М: Міжнародний освітній і психологічний коледж, 1997. - 21с.
. Ільєнко Е.В. Школа пови...