звичайної лінійної регресійної моделі і знаходження залишків
Побудови додаткової моделі, де в якості незалежних змінних використовуються ті ж регресорів, що і в п. 1, а так само їх квадрати, попарні твори і константа. В якості залежної - квадрати залишків вихідної моделі
Підрахунку статистики критерію: W = TR2,
де T - обсяг вибірки. Якщо гіпотеза H0: вірна, то статистика W має розподіл? 2 з l-1 ступенями свободи (l - число регресорів в другій моделі). p>. тест ADF, за допомогою якого можна перевірити залишки економетричної моделі на стаціонарність. Тест Дікі-Фуллера
У тесті Дікі-Фуллера для визначення наявності одиничного кореня використовують 3 типи моделей:
В В В
отже маємо модель одиничного кореня і нестаціонарен.
Розширений тест Дікі-Фуллера
Цей тест є модифікація тесту Дікі-Фуллера і використовується в таких випадках, коли передбачається наявність автокореляційних залишків, що може вплинути на об'єктивність результатів тесту. У такому випадку в праву частину відповідної регресії вводять лагові різниці, наприклад:
В В
Для визначення статистичної значущості коефіцієнта не можна використовувати звичну статистику Стьюдента, замість t-статистики використовується - статистика зі спеціально підрахованими критичними точками Маккиннона для рівнів значимості = 0,01; 0,05; 0,10. Критична область лівостороння. p>. тест Жака-Бера. Критерій Жака-Бера використовується для перевірки гіпотези про те, що досліджувана вибірка xS є вибіркою нормально розподіленої випадкової величини з невідомим математичним очікуванням і дисперсією. Як правило, цей критерій застосовується перед тим, як використовувати методи параметричної статистики, що вимагають нормальності досліджуваних випадкових величин. Для перевірки випадкової величини на нормальність використовується той факт, що у нормального розподілу коефіцієнт асиметрії та ексцес дорівнюють нулю - відхилення цих величин від нульового значення може служити мірою відхилення розподілу від нормального. На основі вибірки будується статистика Жака-Бера
В
(тут n - розмір вибірки), після чого за таблицею квантилів розподілу обчислюється p-значення, відповідне отриманого значення JB. Слід зазначити, що при зростанні n статистика Жака-Бера сходиться до розподілу хі-квадрат з двома ступенями свободи, тому в практиці іноді використовують таблицю квантилів розподілу хі-квадрат. Однак це є помилкою - збіжність надто повільна і нерівномірна. p> У даній роботі були побудовані:
. Коінтегрірованная модель-модель побудована з нестаціонарних рядів, інтегрованих одного порядку. p>. Модель приростів. Модель приросту будується, часові ряди, що входять до первісної модель є інтегрованими першого порядку. p>. Модель перших лагів (1)
. Модель перших лагів (2)-модель в перших лагах без даних показників. p>. ECM (1) - модель корекції помилок. br/>
. Аналіт...