br />
У цій роботі детально розглянуто метод рішення задачі нелінійного програмування - метод Зойтендейка. У теоретичній частині представлена ??суть методу Зойтендейка, а також основні розрахункові формули. У обчислювальної частини наведено приклад розв'язання задачі нелінійного програмування.
Актуальність представленої курсової роботи пов'язана з тим, що на практиці на хід процесу реалізації алгоритмів впливає ряд обставин. У зв'язку з чим, для порівняння алгоритмів, в обчислювальних експериментах використовують спеціальні тестові завдання.
Ці завдання можуть бути як з малою, так і з великим числом змінних, мати різний вид нелінійності.
У цій роботі був вивчений метод Зойтендейка, було розглянуто контрольний приклад, а також розроблена програма, що дозволяє знаходити мінімум функції згідно заданому методу.
Список використаних джерел
1.Пантелеев А.В., Лєтова Т.А. Методи оптимізації в прикладах і задачах.- М.: Вища. шк., 2002.
. Амосов А.А. , Дубинський Ю.А., Копченова Н.В. Обчислювальні методи для інженерів: Учеб. посібник.- М.: Вища. шк., 1994.
3.Лесін В.В., Лісовець Ю.П. Основи методів оптимізації.- М.: Изд-во МАІ, 1998.
. Банді Б. Методи оптимізації. М.: Радіо і зв'язок. 1988.
. Васильєв Ф.П. Методи оптимізації - Видавництво «Факторіал Пресс», 2002.