Теми рефератів
> Реферати > Курсові роботи > Звіти з практики > Курсові проекти > Питання та відповіді > Ессе > Доклади > Учбові матеріали > Контрольні роботи > Методички > Лекції > Твори > Підручники > Статті Контакти
Реферати, твори, дипломи, практика » Новые рефераты » Технологія отримання та фізичні властивості тонких плівок

Реферат Технологія отримання та фізичні властивості тонких плівок





нізму непрямого спін-спінової взаємодії також і неоднорідного обміну, залежно від геометрії розповсюдження постійне електричне поле може призводити до формування при точки мінімуму на дисперсійної кривої об'ємної магнонного моди Е - типу із заданим номером (Мал. 1 a) або до кросоверу (Мал. 1 b) дисперсійних кривих об'ємних електродіпольноактівних спін-хвильових мод з різними номерами (- проекція хвильового вектора розглянутої хвилі на напрям поширення). Знайдено взаємно однозначна відповідність між локальною геометрією поверхні рефракції нормальних кулонівських ТМ-поляритонов в необмеженій антиферомагнетику і структурою спектра цього типу хвилеводних коливань у антиферомагнітної пластині.

Зокрема, в розглянутому випадку, поширювана вздовж АФМ плівки товщиною 2d () об'ємна спінова хвиля буде хвилею зворотного типу, якщо проекція зовнішньої нормалі до поверхні рефракції (Рис 2 a, b) на вісь OY в точці перетину цієї поверхні з прямою має негативний знак, якщо ж проекція позитивна, то відповідна хвиля при заданих частоті, хвильовому числі і номері моди буде хвилею прямого типу. Якщо ж при деякому ця проекція на вісь OY дорівнює нулю, то така ситуація має місце у випадку, коли на дисперсійної кривої об'ємної моди з номером, що біжить уздовж поверхні плівки товщиною 2d, на заданій частоті і значенні хвильового числа мається екстремум для цього.

a) b)

Рис. 1 Спектр дипольно - обмінних об'ємних магнонов Е-типу: a-для,, (.), b - для (), - Частоти антиферомагнітного резонансу при та відповідно.


a) b)

Рис. 2 Структура поверхонь хвильових векторів кулонівських ТМ-поляритонов a-для, b-для. Номер поверхні відповідає номеру моди. br/>

Буде ця точка максимумом або мінімумом визначається знаком локальної гаусової кривизни поверхні рефракції (при або) в цій точці.


Література


1. Ю.Є. Рогинская та ін ЖЕТФ. 43, 3 (9). 69 (1966). p> 2. А.К. Звездин, А.П. П'ятаков УФН. 174, 4. 465 (2004). p> 3. J. Wang et al. Science. 299, 1719 (2003). p> 4. J. Li et al. Appl. Phys. Lett. 84 5261 (2004). p> 5. D. Lee et al. Appl. Phys. Lett. 86, 222903 (2005). p> 6. А.П. П'ятаков. Бюлетень МАГО, том.7, № 2 (2006) (

7. M.K. Singh, H. Ryi, H.M. Jang. Phys. Rev. B 72, 132101 (2005). p> 8. А.Ф. Ревінський та ін Збірник наук. тр. II МНК В«Матеріали та структури сучасної електроніки В», м. Мінськ, 5-6 жовтня 2006 Мн.: БДУ (2006) с. 25-29. br/>


Назад | сторінка 6 з 6





Схожі реферати:

  • Реферат на тему: Вектор-функція. Поняття кривої, лінії і поверхні. Диференціальна геометрі ...
  • Реферат на тему: Магнетронний метод отримання тонких плівок на поверхні стекол
  • Реферат на тему: Методика вимірювання шорсткості поверхні сталевих прутків зі спеціальною об ...
  • Реферат на тему: Розряд уздовж поверхні в резконеоднородном поле
  • Реферат на тему: Приведення рівняння кривої і поверхні другого порядку до канонічного вигляд ...