уна
Х=А * Х + В * U;
Y=C * Х + D * U
Де 0 1 0
А =; В =; С=(1 +0); D=0;
3. Структурна схема електромеханічної стежить системи
.1. Блок-схема електромеханічної стежить системи
Рис.3
.2 Структурна схема САР швидкості з розгорнутою структурною схемою двигуна
Рис.4-структурна схема САР швидкості
Рис.5-структурна схема ДПТ
3.3 Структурна схема електромеханічної стежить системи з згорнутої структурною схемою двигуна
Рис.6-структурна схема електромеханічної стежить системи.
.4 Передавальні функції САР швидкості з управління в tf-формі і розімкнутої і замкнутої електромеханічної стежить системи
Передавальна функція САР швидкості з управління d tf формі:
Wзам (р)=
в0=Краз
а0=1 + Краз
а1=Тм + Ту (сек)
а2=Тм Тя + Тм Ту (сек2)
а3=Тм Тя Ту (сек3)
ПФ розімкнутої електромеханічної стежить системи.
Wраз (р)=
ПФ замкнутої електромеханічної стежить системи.
Wзам (р)=
Краз=Кдос Кпу Ку Кд Кред
. Аналіз електромеханічної стежить системи
.1 Аналіз стійкості
Характеристичне рівняння стежить системи визначається:
a4s4 + a3s3 + a2s2 + a1s + a0=0=Тм Тя Ту=0,0359 * 0,0274 * 0,005=49,18 * 10-7
а3=Тм Ту + Тм Тя=0,0359 * 0,005 +0,0359 * 0,0274=11,6316 * 10-4
а2=Тм Ту=0,0001795
а1=1 + КПУ1 До Кд КТГ=1 +2,2 * 220 * 0,619 * 0,0039=2,1684244
а0=КПУ1 До Кд Ку Кр КПУ2=2,2 * 220 * 0,619 * 10 * 0,01 * 2,2=65,91112
Визначник Гурвіца:
а1 а3 0 0
а0 а2 a4 0
D=0 а1 а3 0
0 а0 а2 a4
a4=49,18 * 10-7
а3=11,6316 * 10-4
а2=0,0001795
а1=2,1684244
а0=65,91112
умова стійкості для системи наступне:
D=а1 а2 а3-а12 a4-а0 А32> 0
D < 0
Так як D < 0, то система нестійка.
.1.2 Аналіз стійкості
На малюнку 7 представлена ??перехідна характеристика двигуна з попередньою установкою s=6%
Рис.7-ПХ двигуна з попередньою установкою s=6%
Рис.8-ПХ нескорректированной САР швидкості
Рис.9-ПХ нескорректированной СС.
.1.3 Аналіз по корінню характеристичного рівняння >> Pole / Zero
Рис.10
Так як корені знаходяться в лівій і правій півплощині:
s1=- 198
s2=- 50,3
s3=6,04 +36,2 i
s4=6,04-36, то система не стійка.
4.1.4 Аналіз стійкості за АФЧХ розімкнутої системи >> Nyquist
Рис.11-ПХ АФЧХ розімкнутої системи
АФЧХ розімкнутої системи охоплює точку з координатами (- 1; j0), отже, система не стійка.
.1.5 Аналіз стійко...