вибіркове значення відповідало істинного значення параметра. p> Можливим є і інший підхід до вирішення даної задачі: знайти такі статистики і, щоб з імовірністю? виконувалася нерівність:
P {} =?
У цьому випадку говорять про інтервального оцінці для. Інтервал
()
називають довірчим інтервалом для з коефіцієнтом довіри?.
Оцінивши за результатами дослідів ту чи іншу статистичну характеристику, виникає питання: наскільки узгоджується з дослідними даними припущення (гіпотеза) про те, що невідома характеристика має саме те значення, яке отримано в результаті її оцінювання? Так виникає другий важливий клас задач математичної статистики - завдання перевірки гіпотез. p> У певному сенсі завдання перевірки статистичної гіпотези є зворотною до задачі оцінювання параметра. При оцінюванні параметра ми нічого не знаємо про його істинному значенні. При перевірці статистичної гіпотези з якихось міркувань передбачається відомим його значення і необхідно за результатами експерименту перевірити це припущення. p> У багатьох задачах математичної статистики розглядаються послідовності випадкових величин, що сходяться в тому чи іншому сенсі до деякого межі (випадкової величиною або константі), коли. p> Таким чином, основними завданнями математичної статистики є розробка методів знаходження оцінок і дослідження точності їх наближення до оцінюваним характеристикам і розробка методів перевірки гіпотез.
.5 Перевірка статистичних гіпотез: основні поняття
Завдання розробки раціональних методів перевірки статистичних гіпотез - одна з основних задач математичної статистики. Статистичної гіпотезою (або просто гіпотезою) називають будь-яке твердження про вид або властивостях розподілу спостережуваних в експерименті випадкових величин. p> Нехай є вибірка, є реалізацією випадкової вибірки з генеральної сукупності, щільність розподілу якої залежить від невідомого параметра.
Статистичні гіпотези щодо невідомого істинного значення параметра називають параметричними гіпотезами. При цьому якщо - скаляр, то мова йде про однопараметричних гіпотезах, а якщо вектор - то про многопараметрических гіпотезах. p> Статистичну гіпотезу називають простий, якщо вона має вигляд
В
де - деяке задане значення параметра.
Статистичну гіпотезу називають складною, якщо вона має вигляд
В
де - деяке безліч значень параметра, що складається більш ніж з одного елемента.
У разі перевірки двох простих статистичних гіпотез виду
В
де - два заданих (різних) значення параметра, першу гіпотезу зазвичай називають основною, а другу - альтернативної, або конкуруючої гіпотезою.
Критерієм, або статистичними критерієм, перевірки гіпотез називають правило, за яким за даними вибірки приймається рішення про справедливість або першої, або другої гіпотези.
Критерій задають за допомогою крити...