Теми рефератів
> Реферати > Курсові роботи > Звіти з практики > Курсові проекти > Питання та відповіді > Ессе > Доклади > Учбові матеріали > Контрольні роботи > Методички > Лекції > Твори > Підручники > Статті Контакти
Реферати, твори, дипломи, практика » Курсовые обзорные » Проектування системи автоматичного регулювання

Реферат Проектування системи автоматичного регулювання





к? 2:


? 2 = 7.203 * 108.


Так як критерій Гурвіца виконується, ми робимо висновок, що дана система автоматичного управління стійка.


. Визначення показників якості системи


Характеристичне рівняння даної системи має вигляд:

(p) = (3.1)


Показники якості системи визначимо за допомогою пакету MATLAB.

Побудуємо перехідну характеристику за допомогою функції step.

Текст програми:

>> p = tf ('p')

Transfer function: p

>> F = (600 * p ^ 3 +37700 * p ^ 2 +392750 * p +639500)/(118 * p ^ 3 +6631 * p ^ 2 +36940 * p +19500)

Transfer function:

p ^ 3 + 37700 p ^ 2 + 392750 p + 639500

--------------------------------------

p ^ 3 + 6631 p ^ 2 + 36940 p + 19500

>> step (F)

В 

Малюнок 3.1 - Графік перехідного процесу


За малюнком 3.1 визначаємо показники якості:

Час регулювання tрег = 4.87 с.;

Перерегулювання? = 0%;

М-коливальність М = 0.

Знайдемо розподіл коренів на комплексній площині за допомогою функції pzmap пакету MATLAB для визначення ступеня стійкості і коливальності. У результаті розподіл коренів на комплексній площині прийме вигляд:

З малюнка 3.2 бачимо:

Ступінь стійкості? = 0.59;

Так як всі корені лежать на дійсній осі, то кут? = 180 Вє.

Коливальність в системі визначимо за формулою? = tg (?). (3.2)

Отже коливальність? = 0.


В 

Малюнок 3. - Розподіл коренів характеристичного рівняння на комплексній площині


. Побудова частотних характеристик розімкнутої системи


Передавальну функцію розімкнутої системи W (p), отриману в п.1, представимо у вигляді добутку передавальних функцій окремих ланок. У результаті формула (1.2) прийме вигляд:


(4.1)


На частоті? = 1 відкладаємо точку 20lg (0.77). Через дану точку проводимо допоміжну пряму під нахилом -20, т. к. до складу передавальної функції входить інтегруюча ланка. Через дану точку під нахилом -20 проводимо допоміжну пряму. Будуємо ЛАЧХ зліва направо до найближчої асимптоти. Асимптоти зліва направо відповідно становлять: 2.12 (для форсуючого ланки), 5 (для інерційного), 12 (для форсуючого), 50 (для інерційного), 50.3 (для форсуючого). p> Відповідно нахили для кожної асимптоти визначаються:

для частоти? = 2.12 -20 +20 = 0;

для частоти? = 5 0-20 = -20;

для частоти? = 12 -20 +20 = 0;

для частоти? = 50 0-20 = -20;

для частоти? = 50.3 -20 +20 = 0.

В результаті отримуємо ЛАЧХ, представлену на малюнку 4.1.


В 

Малюнок 4.1 - ЛАЧХ, побудована асимптотичним методом.


Побудова ЛФЧХ. Для побудови ЛФЧХ скористаємося математичним пакетом MATLAB. p align="justify"> У результаті побудови отримуємо ЛФЧХ, яка має вигляд. Зображений на м...


Назад | сторінка 3 з 6 | Наступна сторінка





Схожі реферати:

  • Реферат на тему: Розрахунок системи автоматичного регулювання частоти обертання колінчастого ...
  • Реферат на тему: Складання функціональної схеми системи автоматичного регулювання частоти дв ...
  • Реферат на тему: Технічний опис системи автоматичного регулювання частоти обертання вала диз ...
  • Реферат на тему: Розрахунок стійкості та якості роботи системи автоматичного регулювання нап ...
  • Реферат на тему: Удосконалення системи управління персоналом в результаті впровадження іннов ...