кість зменшується до 0, а потім тіло змінює напрямок руху і величина швидкості збільшуватиметься (рис. 1.7, д). Графік при (рис. 1.7, е) являє собою параболу з гілками, спрямованими вниз.
Кінематика обертального руху твердого тіла і руху матеріальної точки по колу
При русі матеріальної точки по колу її положення можна визначити координатами x і y або кутом повороту - кутом між радіус-вектором r і віссю х. Радіус-вектор r проведеться від осі обертання до матеріальної точці.
Якщо розглядати обертальний рух твердого тіла, яке має нерухому вісь обертання, то з рис. 1.8 випливає, що кут повороту радіус-векторів, що визначають положення всіх точок твердого тіла, буде одним і тим же, лінійні ж переміщення точок твердого тіла будуть різними (). У зв'язку з цим, якщо знати закон зміни кута для якоїсь довільної точки обертового твердого тіла, то тим самим ми будемо знати рух усіх точок цього тіла.
При рівномірному русі матеріальної точки по колу,, так як швидкість змінюється тільки за напрямком. Нехай за час? T радіус-вектор, який визначає положення точки, повернувся на (рис. 1.9 а).
Швидкість зміни кута є кутова швидкість. При рівномірному обертанні
, (1.15)
тобто кутова швидкість дорівнює відношенню кута повороту радіус-вектора до проміжку часу, за який цей поворот стався. З формули (1.15) випливає, що
. (1.16)
Довжина дуги (рис. 1.9 б) дорівнює, де вимірюється в радіанах. Розділивши ліву і праву частини рівності на? T, отримаємо
, або (1.17)
Виведемо вираз для нормального (доцентровий) прискорення аn. Нехай в момент часу t1 точка знаходилася в А (рис. 1.9 б), її швидкість v1; в момент часу t2 точка знаходиться в В, швидкість v2; так як вона рухається рівномірно
| v1 |=| v 2 | =?.
Переміщення точки одно хорді АВ.
Для визначення зміни швидкості паралельно перенесемо v2 в точку А. Тоді? v=v2 - v1. Трикутник, складений з швидкостей, і трикутник АВО подібні, так як вони рівнобедрені і кути при вершинах рівні, як кути між взаємно-перпендикулярними сторонами (v1 r1 і v2 r2). Отже,
.
Розділимо на? t ліву і праву частини рівності і перейдемо до межі при:
Межа в лівій частині рівності визначає швидкість, а в правій - прискорення:
, (1.18)
звідси
.
При, отже, вектор? v перпендикулярний v і, як показано на рис 1.9 б, спрямований до центру кола.
Якщо тіло одночасно бере участь в обертальному і поступальному рухах, наприклад, катящееся без прослизання колесо, то для визначення швидкостей часто зручно вводити миттєву вісь обертання. На рис. 1.10 Омгн - миттєва вісь обертання. Тіло в деякий даний момент повертається щодо осі Омгн як ціле. Швидкість точки Омгн щодо землі дорівнює 0. Швидкість точки О щодо землі дорівнює. Тоді кутова швидкість усіх точок колеса щодо землі, згідно (1.17), дорівнює, де r - радіус колеса. Звідси швидкість точки А відносно землі дорівнює. Зауважимо, що стосовно рухомий осі Про швидкість точок А і Омгн однакові і рівні. Підкреслимо, що миттєвої віссю обертання стають послідовно всі точки обода колеса.
Криволінійний рух
У загальному випадку криволінійного...