Теми рефератів
> Реферати > Курсові роботи > Звіти з практики > Курсові проекти > Питання та відповіді > Ессе > Доклади > Учбові матеріали > Контрольні роботи > Методички > Лекції > Твори > Підручники > Статті Контакти
Реферати, твори, дипломи, практика » Учебные пособия » Методичний материал по викладання алгебри

Реферат Методичний материал по викладання алгебри





остей и в тому, то багато віпліває з необхідної и достатньої умови рівності векторів


a + b и b + a, a + (b + c) і (a + b) + c.


3) Знайдіть абсолютну величину векторів


a + b, a (1; -4), b (-4; 8),

a (10, 7), b (2; -2).


VI. Підсумок уроку.

Підсумовуючі урок, наголошую учням, что мі навч додаваті Вектори за їхнімі координатами, а такоже Із властівостямі векторів (аналогічно до алгебри). Повідомляю, что ці Властивості мают відповідно іншу Назва: комутатівну ї асоціатівну.

VI. Завдання додому. п. 94 (В§ 10); зап.10 - 13; № 8 (2); Збирай зошити для перевіркі.

УРОК 6 . Тема уроку. ДОДАВАННЯ ВЕКТОРІВ (продовження)


Мета уроку. Сформулюваті ї довести теорему 10.1, а такоже ознайомитись з "правилом трикутника "при додаванні векторів.

Тип уроку. Урок засвоєння новіх знань.

Знання, вміння, навички. Знаті формулювання теореми 10.1; уміті будуваті суму двох векторів за "Правилом трикутника" і "правилом паралелограма" і застосовуваті Нові знання до розв'язування Завдання.

наочні посібники и ТЗН. 1) Кодоскоп, 2) кодопозітіві; 3) діафільм "Вектори на площіні"; 4) картки для проведення Самостійної роботи.

ХІД УРОКУ

І. Перевірка Завдання Вивчення матеріалу.

Віклікаю учнів (4 - 6) до дошки и даю їм картки Із Завдання, Наприклад, такого змісту.

1. Дано Вектори m (2, 3), n (1; -1), k (2; -1). Знайте m + n, б) | m + k |; в) m + n = n + m; г) m + (n + k) = (m + n) + k.

ІІ. Актуалізація опорних знань.

Решта учні розв'язують задачі (на пів усно) на кодоскопу. Поступово демонстр Завдання на дошку-екран:

1) Координати точок А (1; -3), В (2:3). Знайте координат та вектора АВ.

2) Знайте координат та вектора з і абсолютно, ЯКЩО a (0, 3), b (-4; 0). p> 3) Сформулюваті правило додавання векторів. p> 4) Сформулюваті Властивості додавання векторів. p> 5) Які Вектори назіваються рівнімі? p> ІІ. Вивчення нового матеріалу.

1. На дошку-екран демонстр малий. 18, с помощью Якого разом з учнямі доводжу теорему. p> y


A (x 1 ; y 1 )


C (x 3 ; y 3 )

B (x 1 ; y 1 )

O x

Мал.18


Учні запісують.

Дано: A (x 1 ; y 1 ), B (x 2 ; y 2 ), C (x 3 ; y 3 ) - Довільні точки площини. p> Довести: AB + BC = AC (малі 18).

Доведення . У процесі доведення задаю учням Такі запитання:

1) Знайте координат та векторів AB, BC, AC.

Учні запісують в зошит ( Інший учень на дошці або на кодоскопу):


AB (x 2 - x 1 ; y 2 - y 1 );

BC (x 3 - x 2 ; y 3 - y 2 );

AC (x 3 - x 1 ; y 2 - y 1 ).

В 

1) Знайте кординат вектора AB + BC. p> 2) Пропоную учням порівняті кординат векторів AB + BC и AC та

сделать Висновок. Учні роблять Висновок и запісують в Зошиті Рівність: AB + BC = AC, что ї треба Було довести.

На закріплення пропоную учням перевіріті, что теорема справедлівадля таких віпадків: 1) дані точки A, B, C лежати на прямій, что паралельна осі Ox и осі Oy, 2) дані точки мают кординат a (1; 1); B (3, 5), C (7, 4). Учні самостійно віконують Завдання и роблять Висновок.

N



M K P

Мал.19


2. Записати и відмітіті (Малі 19 вектор, Який дорівнює: а) MN + NP; б) MP + PN, в) NP + PM;

В 

г) PK + KM; д) PM = MK.


Учні віконують відповідні малюнки и Використовують " правило трикутника ".

демонстр малий. 215, 216 (за підручніком).


p

q k

l

n c d

m

Мал. 20


Потім демонстр малий. 20 и пропоную віконаті таке Завдання: m + n, c + d k + l, p + q.

3. Розглядаю вправо № 16 (В§ 10, малий. 221, підручник)

Учні прігадують уроки фізики и коментують Дії сил и розв'язуванні Вправи Які зображено на малий. 21. br/>

[AOP = OPB = О±, тому OB = OC sin О±, отже, | F | = | P | sin О±]. p> F

O

B

A

О± C

Мал. 21


4. Демонстр побудову суми двох векторів за " правилом паралелограма ".

План побудова.

1) Відкладаю від качану вектора а вектор b, яікй дорівнює вектору b.


b

В 

a

d


b

Мал. 22


2) На векторах а і b, як на сторонах будуємо паралелограм.

3) Провести Із Спільного качану векторів а і b вектор d (Діагональ парал...


Назад | сторінка 8 з 10 | Наступна сторінка





Схожі реферати:

  • Реферат на тему: Вектор в просторі. Скалярний твір ненульових векторів
  • Реферат на тему: Скалярний добуток двох векторів
  • Реферат на тему: Програми циклічної структури з використанням векторів
  • Реферат на тему: Розв'язування систем трьох лінійніх рівнянь з трьома невідомімі за прав ...
  • Реферат на тему: Розв'язування звічайна діференційніх рівнянь на ЕОМ. Завдання Коші